Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{7}-\dfrac{1}{4}=\dfrac{1}{b}\)
\(\dfrac{4a-7}{28}=\dfrac{1}{b}\)
⇒(4a-7).b=1.28
(4a-7).b=28
⇒4a-7 và b ∈ Ư(28)={-28;-14;-7;-4;-2;-1;1;2;4;7;14;28}
Ta có bảng:
4a-7=-28 thì b=-1
a=-21/4 (loại)
4a-7=-1 thì b=-28
a=3/2 (loại)
4a-7=-14 thì b=-2
a=-7/4 (loại)
4a-7=-2 thì b=-14
a=5/4 (loại)
4a-7=-7 thì b=-4
a=0 (t/m)
4a-7=-4 thì b=-7
a=3/4 (loại)
4a-7=28 thì b=1
a=35/4 (loại)
4a-7=1 thì b=28
a=2 (t/m)
4a-7=14 thì b=2
a=21/4 (loại)
4a-7=2 thì b=14
a=9/4 (loại)
4a-7=4 thì b=7
a= 11/4 (loại)
4a-7=7 thì b=4
a= 7/2 (loại)
Vậy (a;b)=(0;-4);(2;28)
a: Để -13/a+7/a là số nguyên thì \(a\inƯ\left(-6\right)\)
hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
b: \(\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)
Để b/3 là số nguyên thì b=3k(k là số nguyên)
a: \(A=\dfrac{-13}{a}+\dfrac{7}{a}=\dfrac{-6}{a}\)
Để A là số nguyên thì \(a\inƯ\left(-6\right)\)
hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
b: \(B=\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)
Để B là số nguyên thì b chia hết cho 3
hay b=3k, với k là số nguyên
a) (x - 2)(y + 1) = 7
=> x - 2, y + 1 ∈ Ư(7)
Vì x, y ∈ Z => x - 2, y + 1 ∈ Z
=> x - 2, y + 1 ∈ {1; -1; 7; -7}
Lập bảng giá trị:
x - 2 | 1 | 7 | -1 | -7 |
y + 1 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 6 | 0 | -8 | -2 |
Đối chiếu điều kiện x, y ∈ Z
=> Các cặp (x, y) cần tìm là:
(3; 6); (9; 0); (1; -8); (-5; -2)
a) \(n+1\inƯ\left(n^2+2n-3\right)\)
\(\Leftrightarrow n^2+2n-3⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)
Vì \(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)
\(\Leftrightarrow n+1-4⋮n+1\)
Vì \(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) |
\(n\) | \(-2\) | \(0\) | \(-3\) | \(1\) | \(-5\) | \(3\) |
Vậy...
b) \(n^2+2\in B\left(n^2+1\right)\)
\(\Leftrightarrow n^2+2⋮n^2+1\)
\(\Leftrightarrow n^2+1+1⋮n^2+1\)
Vì \(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n^2+1\) | \(-1\) | \(1\) |
\(n\) | \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai) |
\(0\) (tm) |
Vậy \(n=0\)
c) \(2n+3\in B\left(n+1\right)\)
\(\Leftrightarrow2n+3⋮n+1\)
\(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) |
\(n\) | \(-2\) | \(0\) |
Vậy...
a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)
⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1
⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1
Vì n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1
⇔n+1−4⋮n+1⇔n+1−4⋮n+1
Vì n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}
Ta có bảng sau:
n+1n+1 | −1−1 | 11 | −2−2 | 22 | −4−4 | 44 |
nn | −2−2 | 00 | −3−3 | 11 | −5−5 | 33 |
Vậy...
b) n2+2∈B(n2+1)n2+2∈B(n2+1)
⇔n2+2⋮n2+1⇔n2+2⋮n2+1
⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1
Vì n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}
Ta có bảng sau:
n2+1n2+1 | −1−1 | 11 |
nn | √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai) |
00 (tm) |
Vậy n=0n=0
c) 2n+3∈B(n+1)2n+3∈B(n+1)
⇔2n+3⋮n+1⇔2n+3⋮n+1
⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1
⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1
Vì 2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}
Ta có bảng sau:
n+1n+1 | −1−1 | 11 |
nn | −2−2 | 00 |
a) \(\left(x-6\right)^2=9=3^2\)
\(\Rightarrow x-6=3\) hay \(x-6=-3\)
\(\Rightarrow x=9\) hay \(x=3\)
b) \(4^{2x-6}=1=4^0\)
\(\Rightarrow2x-6=0\Rightarrow x=3\)
a) \(\left(x-6\right)^2=9\)
\(\Rightarrow\left(x-6\right)^2=3^2\)
\(\Rightarrow\left[{}\begin{matrix}x-6=-3\\x-6=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=9\end{matrix}\right.\)
b) \(4^{2x-6}=1\)
\(\Rightarrow4^{2x-6}=4^0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)