K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

mik không biết

29 tháng 6 2016

a, cộng vế vs vế của 3 biểu thức ta có :

\(2\left(x+y+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)

\(2\left(x+y+z\right)=-\frac{5}{12}\)

\(x+y+z=-\frac{5}{24}\)

\(\begin{cases}z=\frac{23}{24}\\x=-\frac{11}{24}\\y=-\frac{17}{24}\end{cases}\)

\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{1}{ab}\Rightarrow b-a=1\)

vậy với \(a;b\in Z\)sao cho b=a+1 thì \(\frac{1}{a}-\frac{1}{b}=\frac{1}{ab}\)

31 tháng 5 2015

1/a-1/b=b-a/ab=1/ab

Do đó ab(a-b)=ab, nên b-a=ab:ab

=>b-a=1

=>b=a+1

 

11 tháng 4 2017

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)

\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)

\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Nhân vế theo vế của 3 đẳng thức trên ta có:

\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

11 tháng 4 2017

Bài 2: Không làm được, thông cảm. Gợi ý: Áp dụng chia tỉ lệ

22 tháng 8 2019

minh ko hieu de 

22 tháng 8 2019

đề thiếu rồi bn ơi

14 tháng 7 2019

\(\left|3x-1\right|=\left|2x+5\right|\)

\(\Rightarrow\orbr{\begin{cases}3x-1=2x+5\\3x-1+2x+5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x-2x=5+1\\5x+4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{5}\end{cases}}\)

14 tháng 7 2019

Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|3y-1\right|\ge0\\\left|z+2\right|\ge0\end{cases}}\Rightarrow\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|3y-1\right|=0\\\left|z+2\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\3y-1=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\\z=-2\end{cases}}\)

Vậy x = 1, \(y=\frac{1}{3}\),z = -2

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

3 tháng 1 2016

a=2

b=2

c=1

3 tháng 1 2016

ai tick cho mình tròn 60 vs