K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Ta có : \(2a^2+2b^2+2ab-8a-8b+10=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2-8a+16\right)+\left(b^2-8b+16\right)=22\)

\(\Leftrightarrow\left(a+b\right)^2+\left(a-4\right)^2+\left(b-4\right)^2=22\). Dễ thấy \(\left(a+b\right)^2\le22\Rightarrow a+b< \sqrt{22}< \sqrt{16}=4\)

Phân tích : \(22=3^2+3^2+2^2\).

Từ đó chia ra các trường hợp , ta chọn được (a;b) = (1;1) ; (1;2) ; (2;1)

17 tháng 7 2016

ko phải tìm số nguyên a;b à 

17 tháng 7 2016

j cũng dc nói nói tìm dc là dc -_-

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Bạn xem lại đề. Với $a=1,b=2$ PT vô nghiệm.

12 tháng 6 2017

B xem lại đề bài thử nhé

12 tháng 6 2017

bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải