K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

Xét VT:

\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{1}{a}.\frac{1}{b}\)

Mà \(\frac{1}{a}.\frac{1}{b}=\frac{1}{ab}\) => \(\frac{b-a}{ab}=\frac{1}{ab}\Rightarrow b-a=1\)

Vậy a,b là số nguyên liên tiếp từ thỏa mãn đề bài.

3 tháng 10 2016

Xét VT:

\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a}.\frac{1}{b}\)

Mà \(\frac{1}{a}.\frac{1}{b}=\frac{1}{ab}\) => \(\frac{b-a}{ab}=\frac{1}{ab}\Rightarrow b-a=1\)

Vậy a,b là số nguyên liên tiếp thì thỏa mãn đề bài.

25 tháng 6 2018

Qui đồng lên là đc

1/a-1/b=b-a/ab=1/ab

Vậy b-a=1 hay b=a+1 với mọi a,b nguyên(a,b#0)

hok tốt

14 tháng 7 2015

1/a-1/b=1/a.1/b

=>b-a/ab=1/ab

=>b-a=1

Vậy có vô số a,b sao cho b-a=1

14 tháng 12 2016

a) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow ac+bc=2ab=ac-ab=ab-bc=a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

b) \(\text{Để n nguyên thì P phải nguyên} \)

\(\Rightarrow\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\Rightarrow\frac{1}{n-1}\in Z\)

=> n-1 là ước của 1

=> n-1={-1;1)

=> n={0;2)

14 tháng 12 2016

c) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\)\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

11 tháng 12 2016

b)\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

P là số nguyên \(\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)

\(\Leftrightarrow n-1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{0;2\right\}\)

c)\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)

\(\Rightarrow12x-8y=0,6z-12x=0,8y-6z=0\)

\(\Rightarrow12x=8y,6z=12x,8y=6z\)

\(\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

13 tháng 12 2016

sao câu A ko có z

 

28 tháng 10 2016

Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\) suy ra \(\left(b-a\right)\left(a-b\right)=ab\). Vế trái có giá trị âm vì là tích của hai số đối nhau khác 0, vế phải có giá trị dương vì là tích của hai số dương. Vậy không tồn tại hai số dương a và b khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

Chú ý: Ta cũng chứng minh được rằng không tồn tại hai số a và b khác 0, khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\). Thật vậy, nếu \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab\Rightarrow ab-b^2-a^2+ab=ab\Rightarrow a^2-ab+b^2=0\)

\(\Rightarrow a^2-\frac{ab}{2}-\frac{ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}=0\Rightarrow a\left(a-\frac{b}{2}\right)-\frac{b}{2}\left(a-\frac{b}{2}\right)+\frac{3b^2}{4}=0\)

\(\Rightarrow\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\Rightarrow b=0,a=0.\)

Nhưng giá trị này làm cho biểu thức không có nghĩa.

 

28 tháng 10 2016

GOOD

10 tháng 11 2017

Xét :

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Rightarrow\left(a-b\right)\left(b-a\right)=ab\)

Ta thấy a - b và b - a khác dấu 

=>( a - b ) ( b - a ) = âm.

Ta lại có : ab là 1 số dương

Mà số âm không thể bằng 1 số dương

=> Không tồn tại 2 số lượng a và b khác nhau để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

5 tháng 4 2020

ko đâu

30 tháng 6 2018

\(\frac{a}{4}-\frac{1}{2}=\frac{3}{b}\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)

\(\Rightarrow\left(a-2\right).b=4.3=12\)

\(\Rightarrow b\in U\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Lập bảng rồi tự tìm a;b.

30 tháng 6 2018

\(\frac{a}{4}\)-\(\frac{1}{2}\)=\(\frac{3}{b}\)

\(\frac{a}{4}\)-\(\frac{2}{4}\)=\(\frac{3}{4}\)

=>\(a=5;b=4\)

Thay a = 5  ;   b = 4 vào ta được :\(\frac{5}{4}\)-\(\frac{1}{2}\)=\(\frac{3}{4}\)

Vậy phép tính trên = \(\frac{3}{4}\)

25 tháng 2 2016

Trường hợp 1 :

Giả sử a > b > 0 \(\Rightarrow\frac{1}{a}<\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}<0;\frac{1}{a-b}>0\)

\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

Trường hợp 2

Giả sử a < b \(\Rightarrow\frac{1}{a}>\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}<0\)

\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

Vậy không tồn tại hay không có hai số nguyên dương a ,  b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)