Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ƯCLN(a;b) = 57
\(\Rightarrow\)\(\begin{cases} a = 57x\\ b=57y \end{cases}\) (x,y \(\in\) N*)
\(\Rightarrow\) a+b = 57x + 57y = 57(x+y) = 228
\(\Rightarrow\) x+y = 228/7 = 4
Mà x; y \(\in\) N* \(\Rightarrow\) (x; y) \(\in\) {(1; 3);(2; 2);(3; 1)}
\(\Rightarrow\) (a; b) \(\in\) {(57; 171);(114; 114);(171; 57)}
Vậy.....................................
a) am = an
=> am - an = 0
=> an.(am-n - 1) = 0
=> an = 0 hoặc am-n - 1 = 0
=> a = 0 hoặc am-n = 1
=> a = 0 hoặc m - n = 0
=> m = n
b) am > an
=> am - an > 0
=> an.(am-n - 1) > 0
=> an và am-n - 1 cùng dấu
Mà a > 0 => an > 0 => am-n - 1 > 0
=> am-n > 1
=> m - n > 0
=> m > n
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
Vì \(ƯCLN\left(a,b\right)=32\)nên \(a=32m,b=32n\)
Trong đó \(\left(m,n\right)=1\)
Khi đó \(a.b=32m.32n=1024m.n\)
\(\Rightarrow\)\(6144=1024.m.n\)
\(\Rightarrow\)\(m.n=6\)
Lại có: \(\left(m,n\right)=1\)nên ta có 4 trường hợp sau:
\(m=1;n=6\Rightarrow a=21;b=192\)
\(m=6;n=1\Rightarrow a=192;b=32\)
\(m=2;n=3\Rightarrow a=64;b=96\)
\(m=3;n=2\Rightarrow a=96;b=64\)
vi UCLN(a,b)=57
\(\Rightarrow a⋮57,b⋮57\)
\(\Rightarrow a=57m\)va \(b=57n\)
ma a+b=228\(\Rightarrow56m+56n=228\)
=>m+n=4
Vay: Ta co bang:
Vay:\(\hept{\begin{cases}a=1.57=57\\b=3.57=171\end{cases}}\)hoac\(\hept{\begin{cases}a=2.57=114\\b=2.57=114\end{cases}}\)hoac\(\hept{\begin{cases}a=3.57=171\\b=1.57=57\end{cases}}\)