Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-7x+12=0\)
=>(x-3)(x-4)=0
=>x=3 hoặc x=4
Theo đề, ta có: \(\left\{{}\begin{matrix}9-3a+b=0\\16-4a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a+b=-9\\-4a+b=-16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=12\end{matrix}\right.\)
ta có: f(x)=(x-3)(x+4)=0 =>x-3=0 hoặc x+4=0
=>x=3 hoặc x=-4
vậy ta có nghiệm của đa thức f(x) là 3 và -4
mà nghiệm của đa thức f(x) cũng là nghiệm cảu đa thức g(x) nên thay vào ta được:
g(x)=3^2-3a+b=0 và g(x)=(-4)^2+4a+b=0
(=)9-3a+b=0 và 16+4a+b=0
(=)-3a+b=-9 (1) và 4a+b=-16 (2)
Trừ vế (1) cho vế (2) ta được -7a=7 => a=-1
thạy a=-1 vào (1) ta được (-3)*(-1)+b=-9 =>b=-12
Vậy a=-1 và b=-12
f(x) = 4x + 12
=> 4x + 12 = 0
=> 4x = -12
=> x = -3
Vậy đa thức f(x) = 4x + 12 có nghiệm là -3
Câu b cậu viết lai đề được không ?
\(x^2-7x+12=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Do nghiệm của đa thức \(x^2-7x+12\)cũng là nghiệm của \(g\left(x\right)=x^2-ax+b\)
nên 3 và 4 cũng là nghiệm của \(g\left(x\right)\)
Ta có: \(\hept{\begin{cases}g\left(3\right)=3^2-3a+b=0\\g\left(4\right)=4^2-4a+b=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-3a+b=-9\\-4a+b=-16\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=7\\b=12\end{cases}}\)
Vậy...