Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì đồ thị hàm số ax+b song song với (d1) nên a=3
hay hàm số có dạng là y=3x+b
Vì đồ thị hàm số y=3x+b đi qua điểm C(3;-2)
nên Thay x=3 và y=-2 vào hàm số y=3x+b, ta được:
\(3\cdot3+b=-2\)
\(\Leftrightarrow b+9=-2\)
hay b=-11
Vậy: Hàm số có dạng là y=3x-11
b) Vì (d)⊥(d2) nên \(a\cdot4=-1\)
hay \(a=-\dfrac{1}{4}\)
Vậy: Hàm số có dạng là \(y=-\dfrac{1}{4}x+b\)
Vì (d) đi qua D(2;-1) nên
Thay x=2 và y=-1 vào hàm số \(y=-\dfrac{1}{4}x+b\), ta được:
\(-\dfrac{1}{4}\cdot2+b=-1\)
\(\Leftrightarrow b-\dfrac{1}{2}=-1\)
hay \(b=-\dfrac{1}{2}\)
Vậy: \(a=-\dfrac{1}{4}\) và \(b=-\dfrac{1}{2}\)
a: Thay y=0vào y=2x-3, ta được:
2x-3=0
=>x=1,5
Vì (d)//(d1) nên (d): y=1/2x+b
Thay x=1,5 và y=0 vào (d), ta được:
b+0,75=0
=>b=-0,75
b: Vì (d)//(d1) nên a=2/3
=>(d): y=2/3x+b
Giao điểm của hai đường y=2x+1 và y=3x-2 là:
3x-2=2x+1 và y=2x+1
=>x=3 và y=7
Thay x=3 và y=7 vào (d),ta được;
b+2=7
=>b=5
b, \(y=ax+b\left(d\right);y=x\left(d_1\right);y=-x+1\left(d_2\right);y=3x+5\left(d_3\right)\)
\(\left(d\right)//\left(d_1\right)\Rightarrow a=1\)
Phương trình hoành độ giao điểm của \(\left(d_2\right);\left(d_3\right)\) là
\(-x+1=3x+5\Leftrightarrow x=-1\Rightarrow y=2\Rightarrow\left(-1;2\right)\in\left(d_2\right);\left(d_3\right)\)
Do \(\left(d\right)\) đi qua giao điểm của \(\left(d_2\right);\left(d_3\right)\) nên \(\left(-1;2\right)\in\left(d\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\-a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
\(y=ax+b\left(d\right)\)
1.
\(\left(d\right)\) đi qua \(C\left(4;-3\right)\Rightarrow4a+b=-3\)
\(\left(d\right)\) song song với \(y=-\frac{2}{3}x+1\Rightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)
Khi đó ta có \(\left\{{}\begin{matrix}4a+b=-3\\a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b=-\frac{1}{3}\end{matrix}\right.\Rightarrow y=-\frac{2}{3}x-\frac{1}{3}\left(d\right)\)
2.
Ta có \(\left\{{}\begin{matrix}a+b=2\\a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\Rightarrow y=2x\left(d\right)\)
3.
Ta có \(\left\{{}\begin{matrix}4a+b=2\\a.\left(-\frac{1}{2}\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-6\\a=2\end{matrix}\right.\Rightarrow y=2x-6\left(d\right)\)
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
(d) đi qua A, B => \(\overrightarrow{u_d}\) => \(\overrightarrow{n_d}\) => phương trình (d) biết vtpt và điểm đi qua
a. Gọi M là giao điểm của d1 và d2 => Tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}2x+y-2=0\\x-y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{3}\\y=\frac{-4}{3}\end{matrix}\right.\) => M\(\left(\frac{5}{3};\frac{-4}{3}\right)\)
b. A ∈ d1=> A(a; 2 - 2a) ; B ∈ d2 => B (b ; b - 3)
Theo đề, ta có hệ: \(\left\{{}\begin{matrix}a+b=4\\-2a+b-1=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{-5}{3}\\b=\frac{17}{3}\end{matrix}\right.\)
=> A(\(\frac{-5}{3};\frac{16}{3}\)) ; B(\(\frac{17}{3};\frac{8}{3}\))
=> (d): 4x + 11y - 52 = 0