K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)

b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)

c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)

d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)

e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)

f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)

13 tháng 8 2021

còn 1 câu g nx bạn

10 tháng 10 2021

a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

\(=\left(x-1\right)^2\left(x^2+x+1\right)\)

b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

c) Đổi đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)

10 tháng 10 2021

a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)

e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)

i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)

10 tháng 9 2016

có gì pm

buồn ngủ

27 tháng 11 2018

Để x4 + ax3 + b ⋮ x2 - 1 thì :

x4 + ax3 + b = ( x2 - 1 ) . Q

x4 + ax3 + b = ( x - 1 ) ( x + 1 ) . Q

Vì đẳng thức đúng với mọi x nên :

+) đặt x = 1 ta có :

14 + a . 13 + b = ( 1 - 1 ) ( 1 + 1 ) . Q

1 + a + b = 0

a + b = -1 (1)

+) đặt x = -1 ta có :

( -1 )4 + a . ( -1 )3 + b = ( -1 - 1 ) ( -1 + 1 ) . Q

1 - a + b = 0

-a + b = -1 (2)

Từ (1) và (2) ta giải hệ pt được a = 0 và b = -1

Vậy.......

27 tháng 11 2018

Cảm ơn nha

17 tháng 9 2021

\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)

\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)

Thay \(x=3\)

\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)

Vậy \(a=-12\)

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$

$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$

18 tháng 1 2017

a) Đây là phép chia ết với đa thức thương  x 2  + 2x + 1.

Có thể kiểm tra lại kết quả bằng cách thực hiện nhân hai đa thức (x – 3)( x 2  + 2x +1)

b) Đa thức thương  x 2  – 5.

25 tháng 10 2018

Hay  a − 1 = 0 b + 30 = 0 ⇒ a = 1 b = − 30 .

27 tháng 8 2021

a,x(2x-1)-(x-1)^2-x^2=0

<=>x(2x-1-x)-(x-1)^2=0

<=>x(x-1)-(x-1)^2=0

<=>(x-x+1)(x-1)=0

<=>x-1=0

<=>x=1

b,(x+2)^3-x^3-6x^2=4

<=>x^3+6x^2+12x+8-x^3-6x^2=4

<=>12x+8=4

<=>x=-1/3

tick mik nha

27 tháng 8 2021

`a)x(2x-1)-(x-1)^2-x^2=0`

`<=>2x^2-x-x^2+2x-1-x^2=0`

`<=>x-1=0`

`<=>x=1`

Vậy `x=1.`

`b)(x+2)^3-x^3-6x^2=4`

`<=>x^3+6x^2+12x+8-x^3-6x^2=4`

`<=>12x+8=4`

`<=>12x=-4`

`<=>x=-1/3`

Vậy `x=-1/3.`