K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

a) Do đa thức bị chia có bậc 3

đa thức chia có bậc 2

nên đa thức thương là nhị thức bậc nhất.

\(\Rightarrow\) Hạng tử bậc nhất: \(x^3:x^2=x\)

\(Đặt\text{ }đa\text{ }thức\text{ }thương\text{ }là:x+c\\ \RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^3\: +ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\\ =x^3+2x^2+3x+cx^2+2cx+3c\\ =x^3+\left(c+2\right)x^2+\left(2c+3\right)x+3c\\ \Rightarrow\left\{{}\begin{matrix}c+2=a\\2c+3=2\\3c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c+2\\c=-\dfrac{1}{2}\\b=3c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=\dfrac{3}{2};b=-\dfrac{3}{2}\)

b) Do đa thức bị chia có bậc 4

đa thức chia có bậc 2

nên đa thức thương là tam thức 2

\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)

\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-3x^3-3cx^2-3dx+4x^2+4cx+4d\\ =x^4+\left(c-3\right)x^3+\left(d-3c+4\right)x^2+\left(4c-3d\right)x+4d\\ \Rightarrow\left\{{}\begin{matrix}c-3=-3\Rightarrow c=0\\d-3c+4=3\\4c-3d=a\\4d=b\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}d-0+4=3\Rightarrow d=-1\\0-3d=a\\4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=3;b=-4\)

c) Do đa thức bị chia có bậc 4

đa thức chia có bậc 2

nên đa thức thương là nhị thức bậc 2

\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)

Đặt đa thức thương là \(x^2+cx+d\)

\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+bx^2+ax+b=\left(x^2-1\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-x^2-cx-d\\ =x^4+cx^3+\left(d-1\right)x^2-cx-d\\ \Rightarrow\left\{{}\begin{matrix}c=-3\\d-1=b\\-c=a\\-d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-3\\b=-\dfrac{1}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}thì\text{ }a=-3;b=-\dfrac{1}{2}\)

23 tháng 11 2017

Câu a , b bạn Trần Quốc Lộc làm rồi , câu c mk làm cách k phải hệ số bất định cho

c) Do đa thức chia có bậc 4 , đa thức bị chia có bậc 2 . Suy ra thương có bậc 2

Đặt đa thức chia là : f( x )

Gọi thương của phép chia là q( x) , ta có :

f( x ) = ( x2 - 1). q( x) , với mọi x

(=) x4 - 3x3 + bx2 + ax + b = ( x2 - 1). q( x) , với mọi x ( 1)

Chọn các giá trị riêng của x sao cho :

x2 - 1 = 0 (=) x = 1 hoặc x = - 1

* Với x = 1 , ta có :

(1) <=> - 2 + 2b + a = 0 ( 2)

* Với x = - 1 , ta có :

( 1) <=> 4 + 2b - a = 0 ( 3)

Từ ( 2 , 3 ) ta nhận được : a = 3 ; b = \(-\dfrac{1}{2}\)

Vậy , với a = 3 ; b = \(-\dfrac{1}{2}\) thỏa mãn điều kiện đầu bài