K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

Ta có: a + b = 68 và b - a= 26

=> (a + b) + ( b -a) = 68 + 26 

=> (a + b) + ( b -a) = 94

=> 2b = 94

=> b = 94 : 2

=> b = 47

Vậy b = 47 và a = 47 - 26 = 21

25 tháng 5 2016

b=(68+26):2=47

a=47-26=21

30 tháng 12 2020

a=5

b=35

ƯCLN(a,b)=24

=>\(\left\{{}\begin{matrix}a=24x\\b=24y\end{matrix}\right.\)

Ta có: a+b=120

=>24x+24y=120

=>x+y=5

=>\(\left(x,y\right)\in\left\{\left(0;5\right);\left(5;0\right);\left(1;4\right);\left(4;1\right);\left(2;3\right);\left(3;2\right)\right\}\)

=>\(\left(a,b\right)\in\left\{\left(0;120\right);\left(120;0\right);\left(24;96\right);\left(96;24\right);\left(48;72\right);\left(72;48\right)\right\}\)

mà a,b là các số nguyên tố

nên \(\left(a,b\right)\in\varnothing\)

15 tháng 4 2023

Ta có:

\(a:b=2\dfrac{3}{3}:\dfrac{9}{10}=3:\dfrac{9}{10}=3\times\dfrac{10}{9}=\dfrac{30}{9}=\dfrac{10}{3}\)

Vậy, tỉ số của a và b là `10/3`

AH
Akai Haruma
Giáo viên
18 tháng 1

Lời giải:

a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Khi đó: $BCNN(a,b)=dxy$

Theo bài ra: $d+dxy=19$

$\Rightarrow d(1+xy)=19$

Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:

TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$

Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$

$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$

b,c bạn làm tương tự theo hướng của câu a nhé.

13 tháng 12 2022

\(a,3.5^{x+1}-100=-25\\ 3.5^{x+1}=-25+100\\ 3.5^{x+1}=75\\ 5^{x+1}=75:3\\ 5^{x+1}=25\\ 2^{x+1}=5^2\\ x+1=2\\ x=2-1\\ x=1\)

\(b,4x-26+2x=28\\ 4x+2x-26\\ 6x-26=28\\ 6x=28+26\\ 6x=54\\ x=54:6\\ x=9\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Lời giải:
a.

$(x-15).27=0$

$x-15=0:27=0$

$x=15+0=15$

b.

$23(42-x)=0$

$42-x=0$

$x=42$

c.

$(9x+2).3=60$

$9x+2=60:3=20$

$9x=18$

$x=2$
d.

$71+(26-3x):5=75$

$(26-3x):5=75-71=4$

$26-3x=4.5=20$

$3x=26-20=6$

$x=6:2=3$

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$