Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^3-x^2-x^2+x+3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{-1;1;3;-3\right\}\)
hay \(x\in\left\{0;2;4;-2\right\}\)
a) P(x)=4x2-6x+a; Q(x)=x-3
Lấy P(x):Q(x)=4x-6 dư a+30
Vậy để P(x)⋮Q(x) ⇒ a+30=0 ⇒ a=-30
b) P(x)=2x2+x+a; Q(x)=x+3
Lấy P(x):Q(x)=2x-7 dư a+21
Vậy để P(x)⋮Q(x) ⇒ a+21=0 ⇒ a=-21
c) P(x)=x3+ax2-4; Q(x)=x2+4x+4
Lấy P(x):Q(x)=x+a-4 dư -4(a-5)x+12
Vậy để P(x)⋮Q(x) ⇒ -4(a-5)x+12=0 ⇒ (a-5)x=3
⇒ a-5 ϵ {-1;1;-3;3} (a ϵ Z)
⇒ a ϵ {4;6;2;8}
d) P(x)=2x2+ax+1; Q(x)=x-3
Lấy P(x):Q(x)=2x+a+6 dư 3a+19
Vậy để P(x)⋮Q(x) ⇒ 3a+19=0 ⇒ a=-19/3
e) P(x)=ax5+5x4-9; Q(x)=x-1
Lấy P(x):Q(x)=ax4+(a-5)x3+(a-5)x2+(a-5)x+1 dư a-4
Vậy để P(x)⋮Q(x) ⇒ a-4=0 ⇒ a=4
f) P(x)=6x3-x2-23x+a; Q(x)=2x+3
Lấy P(x):Q(x)=3x2-5x-4 dư a+12
Vậy để P(x)⋮Q(x) ⇒ a+12=0 ⇒ a=-12
g) P(x)=x3-6x2+ax-6 Q(x)=x-2
Lấy P(x):Q(x)=x2-2x+a-4 dư 2(a-4)-6
Vậy để P(x)⋮Q(x) ⇒ 2(a-4)-6=0 ⇒ a=7
Bài h có a,b bạn xem lại đề
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
Đặt Q là thương của phép chia . Vì đây là phép chia hết nên ta có phương trình
5x4+5x3+x2+11x+a = (x2+x+b)Q . Mà vế trái là đa thức bậc 4 nên khi chia cho đa thức bậc 2 thì thương có dạng Q = mx2+nx+h
( với m,n,h là hệ số của đa thức )
=> 5x4+5x3+x2+11x+a = (x2+x+b)(mx2+nx+h)
<=>5x4+5x3+x2+11x+a = mx4+ nx3 + hx2 + mx3 + nx2 + hx + bmx2 + bnx + bh
= mx4 + (m+n)x3 + (h+n+bm)x2 + (h+bn)x + bh
Mà theo nguyên tắc hai vế bằng nhau thì hệ số của bậc nào bằng hệ số bậc cùng bậc bên vế kia .
=> m = 5
m+n = 5 => n = 0
h+bn = 11 => h = 11
h+n+bm = 1 => b = -2
bh = a = -22
Vậy a = -22 ; b = -2 ; Q = 5x2+11
x4-30x2+31x-30 = 0
<=> x4 + ( x3 - x3 ) + ( x2 - x2 - 30x2 ) + ( 30x + x ) -30 = 0
<=> ( x4 + x3 - 30x2 ) + ( -x3 - x2 + 30x ) + ( x2 + x - 30 ) =0
<=> x2.( x2 + x - 30 ) - x.( x2 + x - 30 ) + ( x2 + x - 30 ) = 0
<=> ( x2 + x - 30 )( x2 - x + 1 ) = 0
<=> ( x2 + x - 30 )( x - 5 )( x + 6 ) = 0
Vì x2 + x - 30 = x2 + x + \(\frac{1}{4}\) - \(\frac{121}{4}\) = ( x + \(\frac{1}{2}\) )2 - \(\frac{121}{4}\) \(\ge\)- \(\frac{121}{4}\)
=> x - 5 = 0 hoặc x + 6 = 0
=> x = 5 hoặc x = -6
Vậy tập nghiệm S = { -6 ; 5 }