K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)

\(ƯCLN\left(a;b\right)=4\Rightarrow a=4m;b=4n\left(m;n=1\right)\)

\(\Leftrightarrow4m.4n=448\)

\(\Rightarrow4.\left(m+n\right)=448\)

\(\Leftrightarrow m+n=448:4\)

\(\Leftrightarrow m.n=28\)

\(\Rightarrow\left(m;n\right)=\left(1;28\right);\left(4;7\right)\)

\(\Rightarrow\left(a;b\right)=\left(4;112\right);\left(16;28\right)\)

\(\Leftrightarrow a;b=\left(4;112\right);\left(16;28\right)\)

# chúc bạn học tốt #

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

a.

$ab=ƯCLN(a,b).BCNN(a,b)$

$\Rightarrow 9000=ƯCLN(a,b).900$

$\Rightarrow ƯCLN(a,b)=10$.

Đặt $a=10x, b=10y$ thì $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.

$BCNN(a,b)=10xy=900$

$\Rightarrow xy=90$

Vì $(x,y)=1$ nên ta có các cặp $(x,y)$ sau thỏa mãn:

$(x,y)=(1,90), (2,45), (5,18), (9,10), (10,9), (18,5), (45,2), (90,1)$

Từ đây bạn dễ dàng tìm được $a,b$

b.

$ƯCLN(a,b)=ab:BCNN(a,b)=360:60=6$

Đặt $a=6x, b=6y$ với $x,y$ là stn nguyên tố cùng nhau.

$\Rightarrow BCNN(a,b)=6xy=60$

$\Rightarrow xy=10$

Do $x,y$ nguyên tố cùng nhau nên:

$(x,y)=(1,10), (2,5), (5,2), (10,1)$

Từ đây dễ dàng tìm được $a,b$ 

16 tháng 12 2017

Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath

Nhớ xem và !

16 tháng 12 2017

a, 24 và 10

b, 6 và 30

c, 6 và 36

d, <không có trường hợp nào>

e, 36 và 6

Chúc bạn học giỏi !

<Lưu ý : Bạn xem lại câu d>