
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\left(a^2+4\right)\left(b^2+9\right)\)
\(\ge\left(\sqrt{a^2b^2}+\sqrt{4\cdot9}\right)^2=\left(ab+36\right)^2=VP\)
Xảy ra khi \(\dfrac{a^2}{4}=\dfrac{b^2}{9}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow b=\dfrac{3a}{2}\)
Khi đó \(A=\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{a^2-a\cdot\dfrac{3a}{2}+\left(\dfrac{3a}{2}\right)^2}{a^2+a\cdot\dfrac{3a}{2}+\left(\dfrac{3a}{2}\right)^2}=\dfrac{7}{19}\)
xin lỗi bn nhưng bn có thể giải bằng cách khác ko , mk chưa học BĐT Cauchy-Schwart

Lời giải:
a)
$a+b+c=0\Leftrightarrow (a+b+c)^2=0$
$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$
$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$
Mà $a^2\geq 0$
Do đó: $a^2(ab+bc+ac)\leq 0$
$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)
Dấu "=" xảy ra khi $a=0$
b)
Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)
Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$
$\Leftrightarrow (3c+3)^2\geq 9c^2$
$\Leftrightarrow (c+1)^2\geq c^2$
$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)
Vậy.......

\(\text{a) }ax-bx+ab-x^2\\ \\=\left(ax+ab\right)-\left(x^2+bx\right)\\ \\=a\left(x+b\right)-x\left(x+b\right)\\ \\=\left(a-x\right)\left(x+b\right)\\ \)
\(\text{b) }x^2-y^2+4x+4\\ \\ =\left(x^2+4x+4\right)-y^2\\ \\ =\left(x+2\right)^2-y^2\\ \\ =\left(x+2+y\right)\left(x+2-y\right)\\ \)
\(\text{c) }ax+ay-3x-3y\\ \\=\left(ax+ay\right)-\left(3x+3y\right)\\ \\ =a\left(x+y\right)-3\left(x+y\right)\\ \\=\left(a-3\right)\left(x+y\right)\\ \)
\(\text{d) }x^3+x^2+x+1\\ \\=\left(x^3+x^2\right)+\left(x+1\right)\\ \\=x^2\left(x+1\right)+\left(x+1\right)\\ \\=\left(x^2+1\right)\left(x+1\right)\\ \)
\(\text{e) }x^3-3x^2+3x-9\\ \\=\left(x^3-3x^2\right)+\left(3x-9\right)\\ \\ =x^2\left(x-3\right)+3\left(x-3\right)\\ \\=\left(x^2+3\right)\left(x-3\right)\\ \)
\(\text{f) }x^2+ab+ax+bx\\ \\=\left(x^2+ax\right)+\left(bx+ab\right)\\ \\ =x\left(x+a\right)+b\left(x+a\right)\\ \\=\left(x+b\right)\left(x+a\right)\\ \)
\(\text{g) }xy+1+x+y\\ \\=\left(xy+x\right)+\left(y+1\right)\\ \\=x\left(y+1\right)+\left(y+1\right)\\ \\=\left(x+1\right)\left(y+1\right)\)
\(\text{h) }9-x^2-2xy-y^2\\ \\=9-\left(x^2+2xy+y^2\right)\\ \\=3^2-\left(x+y\right)^2\\ \\=\left(3-x-y\right)\left(3+x+y\right)\\ \)
\(\text{i) }x^2-2xy+y^2-1\\ \\=\left(x^2-2xy+y^2\right)-1\\ \\=\left(x-y\right)^2-1^2\\ \\=\left(x-y-1\right)\left(x-y+1\right)\\ \)
d) x3 + x2 + x + 1
= x2(x + 1) + (x + 1)
= (x + 1)(x2 + 1)
e) x3 - 3x2 + 3x - 9
= x2(x - 3) + 3(x - 3)
= (x - 3)(x2 + 3)
f) x2 + ab + ax + bx
= x2 + bx + ab + ax
= x(x + b) + a(b + x)
= (b + x)(x + a)
g) xy + 1 + x + y
= xy + x + y + 1
= x(y + 1) + (y + 1)
= (y + 1)(x + 1)
h) 9 - x2 - 2xy - y2
= 9 - (x2 + 2xy + y2)
= 32 - (x + y)2
= (3 - x - y)(3 + x + y)
i) x2 - 2xy + y2 - 1
= (x - y)2 - 1
= (x - y - 1)(x - y + 1)

Có \(a^2+b^2=ab+ba\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow a^2-2ab+b^2=0\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a-b=0\Leftrightarrow a=b\)
\(\RightarrowĐPCM\)

1. A B C D M N K E F
a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)
+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)
\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)
b) + Qua M kẻ EF // AB // CD
+ AD // CK
=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)
\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)
+ ME // AN
\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)
=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)
\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)
\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)
* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )

Theo câu a) ta có: \(AH^2=AI.AB\left(1\right)\)
Xét tam giác AHK và tam giác ACH có:
góc A chung; góc AKH = góc AHC = 900
=> tam giác AHK đồng dạng với tam giác ACH (g-g)
=>\(\dfrac{AK}{AH}=\dfrac{AH}{AC}\Rightarrow AK.AC=AH^2\left(2\right)\)
Từ (1)(2) => \(AI.AB=AK.AC\Rightarrow\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét tam giác AIK và tam giác ABC có:
góc A chung; \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
=> Tam giác AIK đồng dạng với tam giác ACB (c-g-c)
a) Xét tam giác AIH và tam giác AHB có:
góc BAH chung; góc AIH = góc AHB (= 900)
=> tam giác AIH = tam giác AHB (g-g)
\(\Rightarrow\dfrac{AH}{AI}=\dfrac{AB}{AH}\Rightarrow AH^2=AI.AB\)

a) ta có : a+b=4 => (a+b)2=16 =>a2+b2=16-2ab=16-4=12
=> \(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)\)
=12((a2+b2)2-3a2b2=12(122-3.16)=1152
b) \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)=a^2+b^2+2ab\\ \Leftrightarrow a^2+b^2-2ab=0\\ \Leftrightarrow\left(a-b\right)^2=0\\ \Leftrightarrow a-b=0\Rightarrow a=b\)
Giải:
Theo bài ra ta có:
\(\overline{ba}\) = 2 x \(\overline{ab}\) + 18
10b + a = 20a + 2b + 18
10b - 2b = 20a - a + 18
8b = 19a + 8
8b + 19b = 19b + 19a + 8
27b = 19.(a + b) + 18 (1)
Thay a + b = 9 vào (1)
27b = 19.9 + 18
27b = 171 + 18
27b = 189
b = 189 : 27
b = 7
a = 9 - b
a = 9 - 7
a = 2
Vậy \(\overline{ab}\) = 27