\(a>0,b>0\)và:

\(ab=4532\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : 

a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)

\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)

\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)

\(A=\sqrt{7}-\sqrt{28}\)

\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)

Vậy \(A=-\sqrt{7}\)

b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)

\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(B=a-b\)

Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)

_Minh ngụy_

Bài 2 :

a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))

Vậy \(x>1\)thì \(B>0\)

_Minh ngụy_

15 tháng 6 2019

Ta có : 

\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)

\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)

\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)

\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)

Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :

\(A+B=x\left(x^2-3y\right)+2y\)

\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)

\(\Rightarrow\)Các đa thức này là các số hữa tỉ  \(\left(đpcm\right)\)

9 tháng 7 2018

\(1a.\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=21-2\sqrt{21}+2\sqrt{21}=21\) \(b.\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}=11+2\sqrt{30}-2\sqrt{30}=11\)

\(2a.\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}.b^2}+\sqrt{\dfrac{a^2}{b^2}.\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+b\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}}=\left(2+b\right)\sqrt{\dfrac{a}{b}}\) \(b.\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{\left(x-1\right)^2}}.\sqrt{\dfrac{\left(2\sqrt{m}x-2\sqrt{m}\right)^2}{81}}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{\text{|}2\sqrt{m}x-2\sqrt{m}\text{|}}{9}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{2\sqrt{m}\text{|}x-1\text{|}}{9}=\dfrac{2m}{9}\) \(3a.VP=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1=VT\)

KL : Vậy đẳng thức được chứng minh.

\(b.VP=\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{\text{|}a+b\text{|}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{a+b}=\text{|}a\text{|}=VT\)

KL : Vậy đẳng thức được chứng minh .

P/s : Dài v ~

29 tháng 6 2019

\(a,\)\(7\sqrt{ab}+7b-\sqrt{a}-\sqrt{b}\)

\(=7\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(7\sqrt{b}-1\right)\)

\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)

\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-1\right)\)

\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)

\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}\left(\sqrt{x-5y}-1\right)\)

a, \(7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}=7\sqrt{B}\left(\sqrt{A}+\sqrt{B}\right)-\left(\sqrt{A}+\sqrt{B}\right)\)\(=\left(\sqrt{A}+\sqrt{B}\right)\left(7\sqrt{B}-1\right)\)

b, \(a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)

c,\(\sqrt{x^2-25y^2}-\sqrt{x-5y}=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)

29 tháng 6 2019

\(a,7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}\)(  Với A>= 0,  B>=0)

\(=\left(7\sqrt{AB}-\sqrt{A}\right)+\left(7B-\sqrt{B}\right)\)

\(=7\sqrt{A}\left(\sqrt{B}-1\right)+7\sqrt{B}\left(\sqrt{B}-1\right)\)

\(=\left(\sqrt{B}-1\right)\left(7\sqrt{A}+7\sqrt{B}\right)\)

\(=7\left(\sqrt{B}-1\right)\left(\sqrt{A}+\sqrt{B}\right)\)

29 tháng 6 2019

\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)Với a>= 0,  b>=0)

\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)

\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)

\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)

\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)

16 tháng 5 2017

cứ quy đồng, tách như bt thui mà :))

16 tháng 5 2017

em tiểu học nên chẳng biết mà ít có người lớp 9 như chị

11 tháng 7 2018

ai tích mình mình tích lại cho

28 tháng 6 2019

\(S=\frac{\left[\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right]^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(S=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^2\sqrt{a}+\left(\sqrt{b}\right)^2\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{b}-\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(S=\frac{\left(\sqrt{a}\right)^3-3\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{3\left(\sqrt{a}\right)^3-3a\sqrt{b}+3\sqrt{a}b}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\sqrt{a}\left[\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3\right]}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)