Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
Ta có: 3a=2b=\(\frac{a}{2}=\frac{b}{3}\)và 4b=5c=\(\frac{b}{5}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{52}{13}=4\)
\(\frac{a}{10}=4\Rightarrow a=10.4=40\)
\(\frac{b}{15}=4\Rightarrow b=15.4=60\)
\(\frac{c}{12}=4\Rightarrow c=12.4=48\)
Có: \(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(4b=5c\Rightarrow\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)
=>\(\frac{a}{10}=4\Rightarrow a=40\)
\(\frac{b}{15}=4\Rightarrow b=60\)
\(\frac{c}{12}=4\Rightarrow c=48\)
ta có : \(\begin{cases}3a=2b\\4b=5c\end{cases}\)<=>\(\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\)<=>\(\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\)
=->\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{-a-b+c}{-10-15+12}=-\frac{52}{13}=-4\)
=>\(\frac{a}{10}=-4\)=> a=-40
\(\frac{b}{15}=-4\)=>b=-60
\(\frac{c}{12}=-4\)=> c=-48
3a = 2b = > 6a = 4b ; 4b = 5c
=> 6a = 4b = 5c
=> 6a/60 = 4b/60 = 5c/60
=> a/10 = b/15 = c/12
=> -a/-10 = b/15 = c/12
=> (-a - b + c)/(-10 - 15 + 12) = a/10 = b/15 = c/12
=> -52/-13 = a/10 = b/15 = c/12
=> 4 = a/10 = b/15 = c/12
=> x = 40; b = 60; c = 48
\(3a=2b;4b=5c\)và \(-a-b+c=-52\)
Theo bài ra ta cs
\(+,3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\)
\(+,4b=5c\Rightarrow\frac{b}{5}=\frac{c}{4}\)
Ta lại cs :
\(+,\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)(1)
\(+,\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=-\frac{52}{-13}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=4\\\frac{b}{15}=4\\\frac{c}{12}=4\end{cases}\Rightarrow\hept{\begin{cases}a=4.10=40\\b=4.15=60\\c=4.12=48\end{cases}}}\)
Ta có : (3a-2b)/5 = (2c-5a)/3 <=> (15a-10b)/25 = (6c -15a)/9 = (15a-10b+6c-15a)/(25+9) = (3c-5b)/17 Do đó: (3c-5b)/17 = (5b-3c_
)/2 = 0. Nên 3a - 2b = 0 => b = 1,5a; 2c - 5a = 0 => c = 2,5a. Lúc đó : a+b+c= 5a = -50 => a = -10; b = -15, c= -25.
a: Ápdụng tính chất của DTSBN, ta được:
\(\dfrac{a}{5}=\dfrac{b}{-2}=\dfrac{a+b}{5-2}=\dfrac{12}{3}=4\)
=>a=20; b=-8
b: 5a=4b
=>a/4=b/5
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{3a-2b}{3\cdot4-2\cdot5}=\dfrac{42}{2}=21\)
=>a=84; b=105