Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
Thấy: (x-1)2 + (y-3)4 + z6 >= 0
=>x=1;y=3;z=0
=>A=2+9+0=11
Dễ này đừng hỏi, ko làm dc thì xuống lớp 7 mà học lại
Đâu phải ai cũng giỏi hả bạn? Không biết thì hỏi chứ có sao đâu?
(x - 1)2 + (y - 3)4 + z6 = 0
<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-3\right)^4=0\\z^6=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\y=3\\z=0\end{matrix}\right.\)
A = 2.1 + 3.3 + 0 = 11
a) \(P=\frac{3x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3\left(x-9\right)}{\left(x-3\right)\left(x-2\right)}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3}{x-2}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3\left(3-x\right)-\left(x+3\right)\left(3-x\right)-\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(3-x\right)}\)
\(P=\frac{9-3x-9+x^2-2x^2+4x-x+2}{\left(x-2\right)\left(3-x\right)}\)
\(P=\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}\) (*)
b) Thay \(x=-\frac{1}{2}\) vào (*) ta có:
\(P=\frac{2-\left(-\frac{1}{2}\right)^2}{\left[\left(-\frac{1}{2}\right)-2\right]\left[3-\left(-\frac{1}{2}\right)\right]}=\frac{2-\frac{1}{4}}{-\frac{5}{2}.\frac{7}{2}}=-\frac{\frac{7}{4}}{\frac{5}{2}.\frac{7}{2}}=-\frac{7}{35}=-\frac{1}{5}\)
c) \(\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}< 0\)
\(\Leftrightarrow2-x^2< 0\)
\(\Leftrightarrow-x^2< -2\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow\hept{\begin{cases}x< -\sqrt{2}\\-\sqrt{2}< x< \sqrt{2}\\x>2\end{cases}}\)
Vậy: ...
jup tui