Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo dãy tỉ số = ta có :
\(\frac{a_1-1}{9}=....=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+7+6+..+1}=\frac{\left(a_1+..+a_9\right)-\left(1+2+..+9\right)}{1+2+3+..+9}\)
\(=\frac{90-45}{45}=1\)
=> a1-1 = 1 => a1 = 2
=> a2 - 2 = 1 => a2 = 3
.......................
=> a9 - 9 = 1 => a9 = 10
Có: a22 = a1.a3
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}\)
Có: a32 = a2.a4
=> \(\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{a_1\text{3}}{a_2\text{3}}=\frac{a_2\text{3}}{a_3\text{3}}=\frac{a_3\text{3}}{a_4\text{3}}=\frac{a_1\text{3}+a_2\text{3}+a_3\text{3}}{a_2\text{3}+a_3\text{3}+a_4\text{3}}=\frac{a_1.a_2.a_3}{a_2.a_3.a_4}=\frac{a_1}{a_4}\)(Tính chất dãy tỉ số bằng nhau)
=>\(\frac{a_1\text{3}+a_2\text{3}+a_3\text{3}}{a_2\text{3}+a_3\text{3}+a_4\text{3}}=\frac{a_1}{a_4}\)(đpcm)
Theo t/c của dãy tỉ số bằng nhau ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)
=> Đặt \(a_1=a_2=a_3=...=a_{2014}=k\)
=> M = \(\frac{k^2+k^2+...+k^2}{ \left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)
\(\text{Theo tính chất dãy tỉ số bằng nhau , ta có :}\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)
\(\Rightarrow\text{Đặt }a_1=a_2=a_3=...=a_{2014}=k\)
\(\Rightarrow\text{ M = }\frac{k^2+k^2+...+k^2}{\left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)
\(\text{Vậy M =}\frac{1}{2014}\)
\(\text{~~Học tốt~~}\)
Áp dụng dãy tỉ số bằng nhau ta có :"
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+..+1}\)
\(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+3+..+9\right)}{1+2+3+..+9}=\frac{90-45}{45}=1\)
=> a1 - 1 = 9 => a1 = 10
=> a2 - 2 = 8 => a2 = 10
...............................
=>a9 - 1 = 9 => a9 = 10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))
Khi đó \(a_1=a_2=a_3=...=a_{2012}\)
=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)
\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)
Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)
Theo bài ra ta có: \(a_1+a_2+...+a_9=90\)
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{a_1-1}{9}=1\Rightarrow a_1-1=9\Rightarrow a_1=10\\\frac{a_2-2}{8}=1\Rightarrow a_2-2=8\Rightarrow a_2=10\\.........\\\frac{a_9-9}{1}=1\Rightarrow a_9-9=1\Rightarrow a_9=10\end{matrix}\right.\)
Vậy \(a_1=10\)
Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)
Từ (1) và (2)
=> S = -5
Ta có: \(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\) và a1+a2+...+a9=90
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=\frac{45}{45}=1\)
Do đó, *)a1-1=9 => a1=10
*)a2-2=8 => a2=10
............................
*)a9-9=1 => a9=10
Vậy a1=a2=a3=a4=a5=a6=a7=a8=a9=10