Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Theo gt, ta có :\(a.\left(a-b\right)-b.\left(a-b\right)=64\Rightarrow\left(a-b\right)^2=64\Rightarrow\)\(\Rightarrow a-b=8\left(1\right)\)
Lại có:\(a.\left(a-b\right)+b.\left(a-b\right)=-16\Rightarrow\left(a+b\right).\left(a-b\right)=-16.\left(2\right)\)\(Thay:a-b=8\)vào \(\left(2\right)\) ta được:
\(\left(a+b\right).8=-16\Rightarrow a+b=-2\left(3\right)\)
Từ \(\left(1\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)
b, Theo gt, ta có :\(a.b.b.c.c.a=\frac{1}{16}\Rightarrow\left(a.b.c\right)^2=\frac{1}{16}\Rightarrow a.b.c=\frac{1}{4}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-\frac{2}{3}\\c=-\frac{3}{4}\end{cases}}\)
Đặt:\(7a=3b=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{k}{7}\\b=\dfrac{k}{3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{k}{7}.\dfrac{k}{3}=20\Rightarrow\dfrac{k^2}{21}=20\Rightarrow k^2=420\Rightarrow k=\pm\sqrt{420}\)
Xét: \(k=\sqrt{420}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\)
Xét: \(k=-\sqrt{420}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{-\sqrt{420}}{7}\\b=\dfrac{-\sqrt{420}}{3}\end{matrix}\right.\)
b) Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\)
\(\Rightarrow\left\{{}\begin{matrix}a=100.2=200\\b=100.3=300\\c=100.4=400\end{matrix}\right.\)
c) Đặt: \(\dfrac{a}{4}=\dfrac{b}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\)
\(\Rightarrow4k.7k=112\)
\(\Rightarrow28k^2=112\)
\(k^2=4\Rightarrow k=\pm2\)
Xét: \(k=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.4=8\\b=2.7=14\end{matrix}\right.\)
Xét:\(k=-2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2.4=-8\\c=-2.7=-14\end{matrix}\right.\)
\(\text{a) }7a=3b\text{ và }ab=20\\ \text{Đặt }7a=3b=k\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{7}k\\b=\dfrac{1}{3}k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=20\\ \Leftrightarrow\left(\dfrac{1}{7}k\right)\left(\dfrac{1}{3}k\right)=20\\ \Leftrightarrow\left(\dfrac{1}{7}\cdot\dfrac{1}{3}\right)\left(k\cdot k\right)=20\\ \Leftrightarrow\dfrac{1}{21}k^2=20\\ \Leftrightarrow k^2=420\\ \Leftrightarrow k=\sqrt{420}\\ \text{Từ }k=\sqrt{420}\text{ suy ra : }\left\{{}\begin{matrix}a=\dfrac{1}{7}\cdot\sqrt{420}\\b=\dfrac{1}{3}\cdot\sqrt{420}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\\ \text{Vậy }a=\dfrac{\sqrt{420}}{7};b=\dfrac{\sqrt{420}}{3}\)
\(\text{b) }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\text{ và }a+b-c=100\\ \text{ Theo bài ra ta có : }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\\ a+b-c=100\\ \text{Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=100\\\dfrac{b}{3}=100\\\dfrac{c}{4}=100\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=200\\b=300\\c=400\end{matrix}\right.\\ \text{Vậy }a=200;b=300;c=400\)
\(\text{c) }\dfrac{a}{4}=\dfrac{b}{7}\text{ và }ab=112\\ \text{Đặt }\dfrac{a}{4}=\dfrac{b}{7}=k\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=112\\ \Leftrightarrow4k\cdot7k=112\\ \Leftrightarrow28k^2=112\\ \Leftrightarrow k^2=4\\ \Leftrightarrow k=2\\ \text{Từ }k=2\Rightarrow\left\{{}\begin{matrix}a=4\cdot2\\b=7\cdot2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8\\b=14\end{matrix}\right.\\ \text{Vậy }a=8;b=14\)
a: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)
b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)
c \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)
d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)
\(\Leftrightarrow\dfrac{ab+1}{3}=\dfrac{ac+2}{5}=\dfrac{bc+3}{9}=\dfrac{ab+ac+bc+1+2+3}{3+5+9}=\dfrac{17}{17}=1\)
=>ab+1=3; ac+2=5; bc+3=9
=>ab=2; ac=3; bc=6
=>(abc)^2=2*3*6=36
=>abc=6 hoặc abc=-6
TH1: abc=6
=>c=3; b=2; a=1
TH2: abc=-6
=>c=-3; b=-2; a=1
\(\left[a,b\right]\in\varnothing\)\(\left[a=\frac{4i}{3},b=\frac{5i}{3}\right]\)
\(\Rightarrow\left[a=-\frac{4i}{3},b=-\frac{5i}{3}\right]\)
\(\Rightarrow\text{Không tồn tại nghiệm nào thỏa mãn.}\)
\(\frac{a}{5}=\frac{b}{4}\Rightarrow\frac{a^2}{25}=\frac{b^2}{16}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\)
\(\frac{a^2}{25}=\frac{1}{9}\Rightarrow a^2=\frac{25}{9}\Rightarrow a=\pm\frac{5}{3}\)
\(\frac{b^2}{16}=\frac{1}{9}\Rightarrow b^2=\frac{16}{9}\Rightarrow b=\pm\frac{4}{3}\)
Vậy \(a=\frac{5}{3},b=\frac{4}{3}\)hay \(a=-\frac{5}{3},b=-\frac{4}{3}\)
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=k\Leftrightarrow a=2k;b=3k\)
\(ab=24\Leftrightarrow6k^2=24\Leftrightarrow k^2=2\\ \Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4;b=6\\a=-4;b=-6\end{matrix}\right.\)
Ta có :
\(\dfrac{a}{2}=\dfrac{b}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\end{matrix}\right.\)
mà \(ab=24\)
\(\Rightarrow2k.3k=24\)
\(\Rightarrow6k^2=24\)
\(\Rightarrow k^2=2^2\)
\(\Rightarrow k=\left\{{}\begin{matrix}2\\-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}=2\\\dfrac{a}{2}=\dfrac{b}{3}=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4;b=6\\a=-4;b=-6\end{matrix}\right.\)