K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

26 tháng 11 2019

\(f\left(x\right)=x^3+2ax+b\)

Vì \(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)\(\Leftrightarrow1+2a+b=0\)\(\Leftrightarrow2a+b=-1\)(1)

Vì \(f\left(x\right)\)chia \(x+2\)\(3\) \(\Rightarrow f\left(-2\right)=3\)

\(\Leftrightarrow-8-4a+b=3\Leftrightarrow-4a+b=11\Leftrightarrow4a-b=-11\)(2)

Cộng (1) với (2) ta được \(2a+b+4a-b=6a=-1-11=-12\)\(\Rightarrow a=-2\)

\(\Rightarrow b=3\)

Vậy \(a=-2;b=3\)

3 tháng 1 2017

Áp dụng định lý Bézout , dư của đa thức f(x) cho nhị thức bậc nhất x - a là f(a), ta có :

\(a^3+a.\left(-1\right)+b=7\) ( 1 )

\(a^3+3a+b=5\) ( 2)

Trừ (1) cho (2) ta có :

\(-4a=7-5=2\Rightarrow a=-0,5\)

Bạn từ đó tính b là được.

1 tháng 11 2024

Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x)               =>P(x)=(x-2).A(x)+5  (1)      và P(x)=(x-3).B(x)=7 (2)                               Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x)           Ta có : (x-2)(x-3) có bậc là 2 =>  R(x) có bậc là 1 => R(x) có dạng ax+b  (a,b là số nguyên )                                                             =>R(x)=(x-2)(x-3).C(x)+ax+b  (3)                                                         thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5                                            thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7                                         => a=2,b=1 =>R(x)=2x+1                                                                      Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1

4 tháng 11 2017

Chia f(x) cho x+1 thì dư 6 => \(f\left(x\right)-6⋮x+1\)

hay \(x^2+ax+b-6⋮x+1\)

Làm tính chia đa thức ta được: \(\left(x^2+ax+b-6\right):\left(x+1\right)=x-1+a\)

và dư ra \(b-a-5\)

Mà phép tính trên chia hết \(\Rightarrow b-a-5=0\Leftrightarrow b-a=5\)(1)

Tương tự: \(x^2+ax+b-3⋮x-2\)

Ta có: \(\left(x^2+ax+b-3\right):\left(x-2\right)=x+2+a\)

dư ra \(2a+b+1\). Phép chia chia hết \(\Leftrightarrow2a+b+1=0\Leftrightarrow2a+b=-1\)(2)

Từ (1) và (2) \(\Rightarrow2a+b-\left(b-a\right)=-1-5\)

\(\Leftrightarrow2a+b-b+a=-6\)

\(\Leftrightarrow3a=-6\Rightarrow a=-2\)

\(\Rightarrow b=3\)

Thay \(a=-2,b=3\)vào \(f\left(x\right):\)

\(f\left(x\right)=x^2-2x+3\)

Vậy...