Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi tương đương:
\(\Leftrightarrow a^6+a^5b+ab^5+b^6\ge a^6+a^4b^2+a^2b^4+b^6\)
\(\Leftrightarrow a^5b-a^4b^2-a^2b^4+ab^5\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Mình nghĩ CM bằng BĐT Bunhiacopxky đã là chi tiết rồi nhưng nếu bạn muốn chi tiết hơn nữa thì thế này:
Xét hiệu:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)-(a+b+c)^2\)
\(=a^2+a^2.\frac{y}{x}+a^2.\frac{z}{x}+b^2+b^2.\frac{x}{y}+b^2.\frac{z}{y}+c^2+c^2.\frac{x}{z}+c^2.\frac{y}{z}-(a^2+b^2+c^2-2ab-2bc-2ac)\)
\(=(a^2.\frac{y}{x}+b^2.\frac{x}{y}-2ab)+(a^2.\frac{z}{x}+c^2.\frac{x}{z}-2ac)+(b^2.\frac{z}{y}+c^2.\frac{y}{z}-2bc)\)
\(=(a\sqrt{\frac{y}{x}}-b\sqrt{\frac{x}{y}})^2+(a\sqrt{\frac{z}{x}}-c\sqrt{\frac{x}{z}})^2+(b\sqrt{\frac{z}{y}}-c\sqrt{\frac{y}{z}})^2\geq 0\) với mọi $a,b,c,x,y,z>0$
Do đó:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)
\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+y+z}\) (đpcm)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)
\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+z+y}\) (đpcm)
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
a, A > 0 <=> \(\begin{cases}a+7>0\\5-a>0\end{cases}\) =>\(\begin{cases}a>-7\\a< 5\end{cases}\) (TM)
hoặc\(\begin{cases}a+7< 0\\5-a< 0\end{cases}\) =>\(\begin{cases}a< -7\\a>5\end{cases}\) (loại)
Vậy -7 < a < 5 thì A > 0
b, B < 0 <=> \(\begin{cases}4-a< 0\\a-2>0\end{cases}\) => \(\begin{cases}a>4\\a>2\end{cases}\) => a > 4
hoặc \(\begin{cases}4-a>0\\a-2< 0\end{cases}\) => \(\begin{cases}a< 4\\a< 2\end{cases}\) => a < 2
Vậy a > 4 hoặc a < 2 thì B < 0
a.
\(\frac{a+7}{5-a}>0\)
=> a + 7 và 5 - a cùng dấu.
Vậy \(x\in\left\{-6;-5;-4;-3;-2;-1;0;1;2;3;4\right\}\)
Chúc bạn học tốt