K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2022

Để \(F=\dfrac{5}{\sqrt{x}+1}\) có giá trị nguyên thì \(5⋮\left(\sqrt{x}+1\right)\)

Suy ra \(\left(\sqrt{x}+1\right)\inƯ\left(5\right)\) hay \(\left(\sqrt{x}+1\right)\in\left\{1;-1;5;-5\right\}\)

Ta có bảng:

\(\sqrt{x}+1\) 1 -1 5 -5
x 0 không có 2 không có

Vậy để \(F=\dfrac{5}{\sqrt{x}+1}\) có giá trị nguyên thì \(x\in\left\{0;2\right\}\)

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2

=>-3 chia hết cho x+2

=>x+2 thuộc {1;-1;3;-3}

=>x thuộc {-1;-3;1;-5}

b: B nguyên khi x^2+x+3 chia hết cho x+1

=>3 chia hết cho x+1

=>x+1 thuộc {1;-1;3;-3}

=>x thuộc {0;-2;2;-4}

24 tháng 12 2023

a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)

=>\(4⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=>\(x\in\left\{16;4;25;1;49\right\}\)

b: loading...

loading...

18 tháng 12 2023

Để A có giá trị là một số nguyên thì:

\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)

Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng sau:

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
x 16 4 25 1 49 (loại)

Vậy ....

 

18 tháng 12 2023

Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để A có giá trị là một số nguyên khi:

\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Do đó:

\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)

\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)

\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)

\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)

\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\)  ( loại )

\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)

Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)

27 tháng 12 2016

Biểu thức nguyên khi 3a-5 chia hết cho 2a-9

=> 2(3a-5) chia hết cho 2a-9 

2(3a-5)=6a-10=6a-27+17=3(2a-9)+17

=> 3a-5 chia hết cho 2a-9 khi 17 chia hết cho 2a-9. Có các TH:

+/ 2a-9=1 => a=10/2=5

+/ 2a-9=-1 => a=8/2=4

+/ 2a-9=17 => a=26/2=13

+/ 2a-9=-17 => a=-8/2=-4

ĐS: a={-4; 4; 5; 13}

27 tháng 12 2016

a=-4;4;13

20 tháng 7 2023

A = \(\dfrac{2a-1}{a-3}\)

A = \(\dfrac{2\left(a-3\right)+5}{a-3}\)

A = 2 + \(\dfrac{5}{a-3}\)

Nếu a < 3 ⇒ a - 3 < 0 ⇒ A < 2

Nếu a > 3 ⇒ a - 3 > 0; a \(\in\) Z; a > 0 

⇒ \(\dfrac{5}{a-3}\) đạt giá trị lớn nhất ⇔ a - 3 = 1 ⇒ a = 4

Vậy Amax = 2 + \(\dfrac{5}{4-3}\) = 7 ⇔ a = 4

20 tháng 7 2023

\(A=\dfrac{2a-1}{a-3}=\dfrac{2a-6+5}{a-3}=\dfrac{2\left(a-3\right)+5}{a-3}=2+\dfrac{5}{a-3}\left(a\ne3\right)\)

mà \(\dfrac{5}{a-3}\le5\left(a\in z\right)\)

\(\Rightarrow A=2+\dfrac{5}{a-3}\le2+5=7\)

Dấu bằng xảy ra khi \(a-3=1\Rightarrow a=4\)

\(\Rightarrow Max\left(A\right)=7\left(a=4\right)\)