\(M=\frac{4a+26}{a+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2016

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

23 tháng 5 2016

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)

28 tháng 10 2016

x>9

 

5 tháng 11 2016

Đặt M = k ( k thuộc Z )

Ta có x - 5 = 3k - kx <=> x( 1+ k ) = 3k + 5 (1) <=> x = \(\frac{3k+5}{k+1}\) = 3 + \(\frac{2}{k+1}\) Vì x \(\varepsilon\)

=> k + 1 \(\varepsilon\) U(2) = { -2 ; -1 ; 1 ; 2 }

Thử chọn k + 1 = -2 ; k + 1 = -1 ; k + 1 = 1 ; k + 1 = 2

<=>               k = -3 ;      k = -2 ;       k = 0 ;       k = 1     Rồi thử chọn k thay vào (1)

<=>               x = 2  ;      x =  1 ;       x = 5 ;       x = 4 ( Nhận hết )

Vậy ta có x \(\varepsilon\) { 2 ; 1 ; 5 ; 4 } tương ứng theo thứ tự M \(\varepsilon\) { -3 ; -2 ; 0 ; 1 )

a) ĐK: \(x\ne2\)

Để A nhỏ nhất thì x-2 nguyên âm lớn nhất => \(x-2=-1\)\(\Leftrightarrow\)\(x=1\) ( nhận ) 

b) ĐK: \(x\ne3\)

\(B=\frac{15-x}{x-3}=-1+\frac{12}{x-3}\)

Để B nhỏ nhất thì x-3 nguyên âm lớn nhất => \(x-3=-1\)\(\Leftrightarrow\)\(x=2\) ( nhận ) 

c) \(x\ne\frac{5}{2}\)

\(C=\frac{10x-26}{2x-5}=5-\frac{1}{2x-5}\)

Để C nhỏ nhất thì 2x-5 nguyên dương nhỏ nhất => \(2x-5=1\)\(\Leftrightarrow\)\(x=3\) ( nhận ) 

1 tháng 4 2016

\(=>A=\frac{-\left(2x-1\right)}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=-2+\frac{7}{x+3}\)\(=>\frac{7}{2x+3}\)thuộc Z

=> 7 chia hết cho 2x+3 

đến đây bạn tự giải nhé

9 tháng 6 2016

a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì  x - 2 là ước của 5. 
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
*  x = 3  =>  A = 6

*  x = 7  =>  A = 2 
*  x = 1  =>  A = - 4

*  x = -3  =>  A = 0 
b)  \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì  x + 3 là ước của7. 
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
*  x = -2  =>  A = 5

*  x = 4  =>  A = -1 
*  x = -4   =>  A = - 9

*  x = -10  =>  A = -3 . 

 

11 tháng 12 2017

Số 1 ở đâu vậy ạ ?

12 tháng 2 2020

\(A=\frac{1-2x}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)

Vì \(-2\inℤ\)\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x+3}\inℤ\)

\(\Rightarrow7⋮x+3\)\(\Rightarrow x+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{-10;-4;-2;4\right\}\)

Vậy \(x\in\left\{-10;-4;-2;4\right\}\)

12 tháng 2 2020

ĐK:\(x\ne-3\)

Với \(A=\frac{1-2X}{X+3}=\frac{-2x-6+7}{x+3}=\frac{-2+7}{x+3}\)

A nguyên <=>\(x+3\inƯ\left(7\right)\)\(\Rightarrow x\in\left\{1;-1;7;-7\right\}\)

Vậy...