Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)
Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)
b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)
Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
x^4 -x^3+6x^2-x+a x^2-x+5 x^2 x^4-x^3+5x^2 x^2 +1 x^2 -x+a -x+5 a-5
\(x^4-x^3+6x^2-x+a=\left(x^2+1\right)\left(x^2-x+5\right)+a-5\)
Để đa thức \(x^4-x^3+6x^2-x+a\) chia hết cho đa thức \(x^2-x+5\)
\(\Rightarrow a-5=0\Leftrightarrow a=5\)
b, Đặt \(2x^3-3x^2+x+a=f\left(x\right)\) và \(x+2=g\left(x\right)\)
Theo dịnh lí Bơ du ta có
Xét \(g\left(x\right)=0\Rightarrow x+2=0\Rightarrow x=-2\)
Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(f\left(-2\right)=0\)
\(f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)
\(\Rightarrow f\left(x\right)=-16-12-2+a=0\)
\(\Rightarrow f\left(x\right)=-30+a=0\)
\(\Rightarrow a=30\)
Vậy \(a=30\) thì \(f\left(x\right)\) chia hết cho \(g\left(x\right)\)
Câu b) Thay x=-2 vào rồi giải theo phương pháp giá trị riêng
\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)
Vậy a = 5
x^4+6x^3+7x^2-6x+a=x^4+2.3x.x^2+9x^2-6x-2x^2+a
=(x^2+3x)^2-2(3x+x^2)+a=(3x+x^2)(x^2+3x-2)+a
vậy a=3(3x+x^2)
tôi chịu, sai thì... T.T
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
ta có : đa thức
\(-x^3+6x^2-x+a\text{ chia hết cho x-1}\) khi nó cũng có nghiệm x=1
vậy ta có :
\(-1^3+6.1^2-1+a=0\Leftrightarrow a=-4\)