\(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow a^3+3a-2a^2-6+4a-1⋮a^2+3\)

\(\Leftrightarrow16a^2-1⋮a^2+3\)

\(\Leftrightarrow a^2+3\in\left\{1;-1;7;-7;49;-49\right\}\)

hay \(a\in\left\{2;-2\right\}\)

2 tháng 5 2020

Thực hiện phép chia a3-2a2+7a-7 cho a2+3, kết quả: a3-2a2+7a-7=(a2+3)(a-2)+(4a+1)

Lập luận để phép chia hết thì 4a-1 chia hết cho a2+3 (4a+1)\(⋮\)(a+3)

=> (4a+1)(4a+1) \(⋮\)(a2+3) (vì a thuộc Z nên 4a+1 thuộc Z)

=> (16a2-1) chia hết cho a2+3

=> [16(a2+3)-49] chia hết cho a2+3

=> 49 chia hết cho a2+3

+) Tìm a, thử lại và kết luận a={-2;2}

23 tháng 2 2018

NGUYỄN CẢNH LINH QUÂN 

chẳng nhẽ CTV ko đc hỏi!

não có vấn đề à bn :))

23 tháng 2 2018

Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi 

10 tháng 12 2018

\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)

\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)

Bài 1:

a: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)