Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.
a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2.
- Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.
b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9.
- Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.
Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.
c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8.
- Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.
Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.
Chứng minh rằng:
a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002 +8 chia hết cho 2 và 9.
b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004 +14 chia hết cho 2 và 3.
Bài 1
a/ \(\overline{3a5}\) chia hết cho 3 mà không chia hết cho 9 khi 3+a+5=8+a={12;15} => a={4;7}
b/ \(\overline{a27b}\) chia hết cho 2 và 5 khi b=0 \(\Rightarrow\overline{a27b}=\overline{a270}\)
\(\overline{a270}\) chia hết cho 3 và 9 khi nó chia hết cho 9 => a+2+7=9+a chia hết cho 9
=> 9+a={9;18}=> a={0;9}
Bài 2
a/ \(10^{15}+8=100...08\) (14 chữ số 0) là 1 số chẵn và có tổng các chữ số =9 nên chia hết cho 2 và 9
b/ \(10^{2010}+8=100...08\) (2009 chữ số 0) là 1 số có tổng các chữ số là 9 nên chia hết 9
aaaaa96 chia hết cho 3 thì 5a + 96 phải chia hết cho 3
mà 96 chia hết cho 3 => 5a + 96 muốn chia hết cho 3 thì 5a phải chia hết cho 3
=> a = {3; 6; 9}
aaaaa96 chia hết cho 8 khi a96 phải chia hết cho 8 (số chia hết cho 8 là số có 3 chữ số tận cùng chia hết cho 8)
=> Trong các số 396; 696; 996 chỉ có 696 chia hết cho 8
=> a thoả mãn điều kiện đề bài là a = 6
a=6 vì aaaaa96 chia hết cho cả 3 và 8.
Xin lỗi,không biết trình bày
Để \(\overline{aaaaa96}\) chia hết cho 3
=> a + a + a + a +a + 9 + 6 chia hết cho 3
=> \(5a+15\) chia hết cho 3
=> \(5a\) chia hết cho 3( vì 15 chia hết cho 3)
Với chú ý a là số tự nhiên từ 1 đến 9
=> a = 3 hoặc a = 6 hoặc a =9
+) Với a =3 ta có: 3333396 không chia hết cho 8 nên loại.
+) Với a = 6 ta có 6666696 = 8. 833337 chia hết cho 8 => a =6 thỏa mãn
+) Với a = 9 ta có: 9999996 không chia hết cho 8 nên loại
Vậy a = 6.