\(x^4+ax^2+1⋮x^2-2x+1\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

sửa lại :

1) ...; \(\div x-2\) dư 4

30 tháng 11 2016

giúp e vs các a cj soyeon_Tiểubàng giải

Phương An

Hoàng Lê Bảo Ngọc

Nguyễn Huy Tú

Silver bullet

Nguyễn Như Nam

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn

 

1 tháng 10 2019

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

5 tháng 8 2018

a)

Gọi \(x^4+ax^2+1\)\(f\left(x\right)\). Theo bài ra ta có PT:

\(f\left(-1\right)=\left(-1\right)^4+a\left(-1\right)^2+1=0\)

\(\Leftrightarrow f\left(-1\right)=1+a+1=0\)

\(\Leftrightarrow f\left(-1\right)=a=-2\)

\(\Leftrightarrow a=-2\)

Vậy a=-2

5 tháng 8 2018

Gọi \(Q\left(x\right)\) là thương khi chia \(f\left(x\right)\) cho \(x+5\) được dư là 2. Theo bài ra ta có PT:

\(f\left(x\right)=3x^2+ax+27=\left(x+5\right).Q\left(x\right)+2\)

<=>\(f\left(-5\right)=3.\left(-5\right)^2+a\left(-5\right)+27=0.Q\left(x\right)+2=2\)

\(\Leftrightarrow f\left(-5\right)=75-5a+27=2\)

\(\Leftrightarrow f\left(-5\right)=-5a=-100\)

\(\Leftrightarrow f\left(-5\right)=a=20\)

\(\Leftrightarrow a=20\)

Vậy a=20

Chúc bạn học thật giỏi! ^^

Nguyễn Thanh Hằng làm giùm bài này luôn đi

18 tháng 11 2022

a: \(\dfrac{x^4-6x^3+16x^2-22x+a}{x^2+2x+3}\)

\(=\dfrac{x^4+2x^3+3x^2-8x^3-16x^2-24x+29x^2+58x+87+34x-87+a}{x^2+2x+3}\)

\(=x^2-8x+29+\dfrac{34x+a-87}{x^2+2x+3}\)

Để đây là phép chia hết thì 34x+a-87=0

=>a=87-34x

b: \(\dfrac{2x^2+ax+1}{x-3}=\dfrac{2x^2-6x+\left(a+6\right)x-3a-18+3a+19}{x-3}\)

\(=2x+\left(a+6\right)+\dfrac{3a+19}{x-3}\)

Để có dư là 4 thì 3a+19=4

=>3a=-15

=>a=-5

NV
5 tháng 10 2019

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

3 tháng 7 2019

@Bonking

3 tháng 7 2019

@svtkvtm