Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giúp e vs các a cj soyeon_Tiểubàng giải
Phương An
Hoàng Lê Bảo Ngọc
Nguyễn Huy Tú
Silver bullet
Nguyễn Như Nam
Nguyễn Trần Thành Đạt
Nguyễn Huy Thắng
Võ Đông Anh Tuấn

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

a)
Gọi \(x^4+ax^2+1\) là \(f\left(x\right)\). Theo bài ra ta có PT:
\(f\left(-1\right)=\left(-1\right)^4+a\left(-1\right)^2+1=0\)
\(\Leftrightarrow f\left(-1\right)=1+a+1=0\)
\(\Leftrightarrow f\left(-1\right)=a=-2\)
\(\Leftrightarrow a=-2\)
Vậy a=-2
Gọi \(Q\left(x\right)\) là thương khi chia \(f\left(x\right)\) cho \(x+5\) được dư là 2. Theo bài ra ta có PT:
\(f\left(x\right)=3x^2+ax+27=\left(x+5\right).Q\left(x\right)+2\)
<=>\(f\left(-5\right)=3.\left(-5\right)^2+a\left(-5\right)+27=0.Q\left(x\right)+2=2\)
\(\Leftrightarrow f\left(-5\right)=75-5a+27=2\)
\(\Leftrightarrow f\left(-5\right)=-5a=-100\)
\(\Leftrightarrow f\left(-5\right)=a=20\)
\(\Leftrightarrow a=20\)
Vậy a=20
Chúc bạn học thật giỏi! ^^

a: \(\dfrac{x^4-6x^3+16x^2-22x+a}{x^2+2x+3}\)
\(=\dfrac{x^4+2x^3+3x^2-8x^3-16x^2-24x+29x^2+58x+87+34x-87+a}{x^2+2x+3}\)
\(=x^2-8x+29+\dfrac{34x+a-87}{x^2+2x+3}\)
Để đây là phép chia hết thì 34x+a-87=0
=>a=87-34x
b: \(\dfrac{2x^2+ax+1}{x-3}=\dfrac{2x^2-6x+\left(a+6\right)x-3a-18+3a+19}{x-3}\)
\(=2x+\left(a+6\right)+\dfrac{3a+19}{x-3}\)
Để có dư là 4 thì 3a+19=4
=>3a=-15
=>a=-5

Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)