K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thay x=-2 và y=-3 vào \(y=a\cdot x^2\), ta được:

\(a\left(-2\right)^2=-3\)

=>4a=-3

=>\(a=-\dfrac{3}{4}\)

17 tháng 3

a=-3/4

20 tháng 4 2020

Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên

0=−a+b0=−a+b

<−>a=b<−>a=b

Xét ptrinh hoành độ giao điểm

12x2=ax+a12x2=ax+a

<−>x2−2ax−2a=0<−>x2−2ax−2a=0

Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay

a2+2a=0a2+2a=0

<−>a(a+2)=0<−>a(a+2)=0

Vậy a=0a=0 hoặc a=−2a=−2

Do a≠0a≠0 nên a=−2a=−2.

Vậy y=−2x−2y=−2x−2

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)

b: 

1: Thay x=-1 và y=3 vào (d), ta được:

\(2\cdot\left(-1\right)-a+1=3\)

=>-a-1=3

=>-a=4

hay a=-4

1. Cách viết phương trình đường thẳng đi qua 2 điểm1.1. Cách 1: Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)Gọi phương trình đường thẳng có dạng d: y=ax+bVì A và B thuộc phương trình đường thẳng d nên ta có hệThay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.1.2. Cách 2 giải nhanhTổng quát dạng bài viết phương trình...
Đọc tiếp

1. Cách viết phương trình đường thẳng đi qua 2 điểm

1.1. Cách 1: 

Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)

  • Gọi phương trình đường thẳng có dạng d: y=ax+b
  • Vì A và B thuộc phương trình đường thẳng d nên ta có hệ
  • Thay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.

1.2. Cách 2 giải nhanh

Tổng quát dạng bài viết phương trình đường thẳng đi qua 2 điểm: Viết phương trình đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2).


Cách giải:
Giả sử đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2) có dạng: y = ax + b (y*)
Vì (y*) đi qua điểm A(x1;y1) nên ta có: y1=ax1 + b (1)
Vì (y*) đi qua điểm B(x2;y2) nên ta có: y2=ax2 + b (2)
Từ (1) và (2) giải hệ ta tìm được a và b. Thay vào sẽ tìm được phương trình đường thẳng cần tìm.

Bài tập ví dụ viết phương trình đường thẳng đi qua 2 điểm

Bài tập 1: Viết phương trình đường thẳng đi qua hai điểm A (1;2) và B(0;1).

Bài giải: 

Gọi phương trình đường thẳng là d: y=ax+by=ax+b

Vì đường thẳng d đi qua hai điểm A và B nê n ta có:

⇔  

Thay a=1 và b=1 vào phương trình đường thẳng d thì d là: y=x+1

Vậy phương trình đường thẳng đi qua 2 điểm A và B là : y=x+1

Bài tập 2: Cho Parabol (P):y=–ײ . Viết phương trình đường thẳng đi qua hai điểm A và B biết  A và B là hai điểm thuộc (P) và có hoành độ lần lượt là 1 và 2.

Bài giải

Với bài toán này chúng ta chưa biết được tọa độ của A và B là như nào. Tuy nhiên bài toán lại cho A và B thuộc (P) và có hoành độ rồi. Chúng ta cần đi tìm tung độ của điểm A và B là xong.

Tìm tọa độ của A và B:

Vì A có hoành độ bằng -1 và thuộc (P) nên ta có tung độ y =−(1)²=–1 => A(1;−1)

Vì B có hoành độ bằng 2 và thuộc (P) nên ta có tung độ y =–(2)²=−4 ⇒ B(2;−4) còn  cách  khác k ?

0