\(\frac{3-4a}{1+a^2}\)đạt GTNN.. tìm GTNN đó

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Đặt \(A=\frac{3-4a}{1+a^2}\)

Gọi k là một giá trị của A

=> \(A=\frac{3-4a}{a^2+1}=k\)

=> ka2 + k = 3 - 4a

<=> a2k + 4a + k - 3 = 0

<=> a2k2 + 4ak + k2 - 3k = 0 (cùng nhân cả 2 vế với k)

<=> (a2k2 + 4ak + 4) + (k2 - 3k - 4) = 0

Vì a2k2 + 4ak + 4 = (ak + 2)2 \(\ge\) 0 với mọi a, k

=> k2 - 3k - 4 \(\le\) 0

\(\Leftrightarrow\left(k+1\right)\left(k-4\right)\le0\)

\(\Leftrightarrow-1\le k\le4\)

Vậy GTNN của A là -1. Bài đầu trong ngày, hy vọng không sai ^_^

16 tháng 1 2017

\(A=2x^2+9y^2-6xy-6x-12y+2036\)

   \(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)

 \(\Rightarrow A\ge2007\)

Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)

3 tháng 1 2017

\(A\ge-1\) đạt được khi x=-1