Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: \(8A=8+8^2+...+8^8\)
\(\Leftrightarrow7A=8^8-1\)
hay \(A=\dfrac{8^8-1}{7}\)
b: \(8B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Leftrightarrow8B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Leftrightarrow8B=3^{16}-1\)
hay \(B=\dfrac{3^{16}-1}{8}\)
Bài 2:
a: \(x^2\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b: \(x^8+36x^4=0\)
\(\Leftrightarrow x^4=0\)
hay x=0
a(b+3)-b(3+b)
=(3+b)(a-b)
Thay số, có: (3+1997).(2003-1997)
= 2000.6 =12000
xy(x+y)-2x-2y
xy(x+y)- 2(x+y)
(x+y).(xy-2)
Thay số, co: 7. (8-2)
7.4=28
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
B1 a, x^3+1=0 <=> x^3 = -1
<=> x=-1
b, x^2=2x<=> x^2-2x = 0
<=> x.(x-2)=0 <=> x=0 hoặc x-2=0
<=> x=0 hoặc x=2
c, 3x^2-6x-24=0
<=> (3x^2+6x)-(12x+24) = 0
<=> (x+2) . (3x-12) = 0
<=> x+2=0 hoặc 3x-12=0
<=> x=-2 hoặc x=4
B2, a, Có 2012^2 = 2012.2012 = (2011+1).2012 = 2011.2012 + 2012
= 2011.2012+2011 + 1 = 2011.(2012+1) +1 = 2011.2013 +1 > 2011.2013
=> 2011.2013 < 2012^2
c, a+b+c = 0 <=> a+b=-c
<=> (a+b)^3 = -c^3
<=> a^3+b^3+3ab.(a+b) = -c^3
<=> a^3+b^3+c^3 + 3ab(a+b)=0
<=> a^3+b^3+c^3 = -3ab.(a+b) = -3ab.(-c) = 3abc => ĐPCM
a)
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^3+2b^3\ge a^3+ab^2+a^2b+b^3\)
\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-ab^2-a^3-b^3\ge0\)
\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
Vì a , b > 0 nên BĐT trên đúng, mà các phép biến đổi là tương đương
=> ĐPCM
b) Ta có
\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
\(\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3ab^2+3a^2b\)
\(\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\)
\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)
Theo câu a , có phần trong ngoặc luôn lớn hơn hoặc bằng 0
\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)
Các phép biến đổi là tương đương => ĐPCm
\(\left(a+b\right)^4=a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)
\(8\left(a^4+b^4\right)\ge\left(a+b\right)^4\)
\(\Leftrightarrow8\left(a^4+b^4\right)\ge a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)
\(\Leftrightarrow7\left(a^4+b^4\right)\ge4a^3b+6a^{^2}b^2+4ab^3\)
\(\Leftrightarrow7a^4+7b^4-4a^3b-6a^2b^2-4ab^3\ge0\)
\(\Leftrightarrow4a^3\left(a-b\right)-4b^3\left(a-b\right)+3\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow4\left(a-b\right)^2\left(a^2+ab+b^2\right)+3\left(a^2-b^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra
<=> a=b
\(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow a^4+2a^2b^2+b^4-a^3b-2a^2b^2-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> a=b
a) a ∈ − 6 ; 1 b) a = 0