K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

Xin hãy giúp tôi

18 tháng 5 2021

Vì tỉ số giữa hai nghiệm khác 1 nên pt có hai nghiệm pb

\(\Rightarrow\Delta=4m^2-4\left(2m-1\right)>0\)

\(\Leftrightarrow m\ne1\)

Áp dụng viet có: \(\left\{{}\begin{matrix}y_1+y_2=2m\\y_1y_2=2m-1\end{matrix}\right.\) 

Giả sử \(y_1=2y_2\) 

Có hệ: \(\left\{{}\begin{matrix}y_1+y_2=2m\\y_1=2y_2\\y_1y_2=2m-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_1=\dfrac{4m}{3}\\y_2=\dfrac{2m}{3}\\y_1y_2=2m-1\end{matrix}\right.\)\(\Rightarrow\dfrac{4m}{3}.\dfrac{2m}{3}=2m-1\)

\(\Leftrightarrow8m^2-18m+9=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{3}{4}\end{matrix}\right.\)(tm)

 

 

 

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

NV
8 tháng 4 2022

Đề đúng không em nhỉ? \(x_2=y_2^2+y_1\) hay \(x_2=y_2^2+2y_1\)?

9 tháng 4 2022

Do \(y_1,y_2\) là hai nghiệm của PT \(y^2+3y+1=0\) nên theo hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}y_1+y_2=-3\\y_1.y_2=1\end{matrix}\right.\).

Do \(x_1,x_2\) là hai nghiệm của PT \(x^2+px+q=0\) nên ta có \(\left\{{}\begin{matrix}x_1+x_2=-p\\x_1x_2=q\end{matrix}\right.\)

Lại có \(x_1=y_1^2+2y_2;x_2=y_2^2+2y_1\)

\(\Rightarrow\left\{{}\begin{matrix}-p=y_1^2+y_2^2+2\left(y_1+y_2\right)\\q=\left(y_1^2+2y_2\right)\left(y_2^2+2y_1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-p=\left(y_1+y_2\right)^2-2y_1y_2+2\left(y_1+y_2\right)\\q=\left(y_1y_2\right)^2+4y_1y_2+2\left(y_1^3+y_2^3\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-p=\left(y_1+y_2\right)^2-2y_1y_2+2\left(y_1+y_2\right)\\q=\left(y_1y_2\right)^2+4y_1y_2+2\left[\left(y_1+y_2\right)\left(\left(y_1+y_2\right)^2-3y_1y_2\right)\right]\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-p=\left(-3\right)^2-2.1+2.\left(-3\right)=1\\q=1^2+4.1+2\left(\left(-3\right).\left(3^2-3.1\right)\right)=31\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}p=-1\\q=31\end{matrix}\right.\)

NV
9 tháng 9 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)

\(\Rightarrow y_1;y_2\) là nghiệm của:

\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)

NV
24 tháng 1 2022

Pt hoành độ giao điểm: \(x^2-mx-1=0\)

\(ac=-1< 0\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)

\(y_1+y_2=y_1y_2\Leftrightarrow mx_1+1+mx_2+1=x_1^2x_2^2\)

\(\Leftrightarrow m\left(x_1+x_2\right)+2=1\)

\(\Leftrightarrow m^2+1=0\) (vô nghiệm)

Vậy ko tồn tại m thỏa mãn đều bài

\(x_M=\dfrac{x_A+x_B}{2}=\dfrac{m}{2}\) ; 

\(y_M=\dfrac{y_A+y_B}{2}=\dfrac{mx_A+1+mx_B+1}{2}=\dfrac{m\left(x_A+x_B\right)+2}{2}=\dfrac{m^2+2}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}m=2x_M\\m^2=2y_M-2\end{matrix}\right.\)

\(\Rightarrow\left(2x_M\right)^2=2y_M-2\)

\(\Rightarrow y_M=2x_M^2+1\)

\(\Rightarrow\) Quỹ tích M là parabol có pt \(y=2x^2+1\)

PTHĐGĐ là:

x^2-(2m+1)x+2m=0

Δ=(2m+1)^2-4*2m

=4m^2+4m+1-8m=(2m-1)^2

Để (P) cắt (d) tại hai điểm phân biệt thì 2m-1<>0

=>m<>1/2

y1+y2-x1x2=1

=>(x1+x2)^2-3x1x2=1

=>(2m+1)^2-3*2m=1

=>4m^2+4m+1-6m-1=0

=>4m^2-2m=0

=>m=0 hoặc m=1/2(loại)