Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đa thức này nhận x=1 làm nghiệm thì \(a^2\cdot1^{2014}-5a\cdot1^{2015}-24\cdot1^{2016}=0\)
\(\Leftrightarrow a^2-5a-24=0\)
=>(a-8)(a+3)=0
=>a=8 hoặc a=-3
Lời giải:
Ta có:
\(f(x)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^3}{2}-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}\)
Với mọi giá trị nguyên của $x$ thì $(x-1)x$ là tích của hai số nguyên liên tiếp nên luôn chia hết cho $2$
Do đó: \(x^2(x-1)\vdots 2\Rightarrow f(x)=\frac{x^2(x-1)}{2}\in\mathbb{Z}\) với mọi gt nguyên của $x$ (đpcm)
Ta có: \(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
\(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
https://dethi.violet.vn/present/showprint/entry_id/11072330
bạn vào link trên sẽ có full đề và đáp án
p/s: nhớ k cho mình nha <3
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
Ta có: \(N\left(x\right)=x^{2017}-2018x^{2016}+2018x^{2015}-...-2018x^2+2018x-1\)
\(=x^{2017}-2018\left(x^{2016}-x^{2015}+...+x^2-x\right)-1\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018\left(2017^{2016}-2017^{2015}+...+2017^2-2017\right)-1\)
Đặt \(A=2017^{2016}-2017^{2015}+...+2017^2-2017\)
\(\Rightarrow2017A=2017^{2017}-2017^{2016}+...+2017^3-2017^2\)
\(\Rightarrow2018A=2017^{2017}-2017\)
\(\Rightarrow A=\dfrac{2017^{2017}-2017}{2018}\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018.\dfrac{2017^{2017}-2017}{2018}-1\)
\(=2017^{2017}-\left(2017^{2017}-2017\right)-1\)
\(=2017^{2017}-2017^{2017}+2017-1\)
\(=2016\)
Vậy N(2017) = 2016
Thay x=1 vào đa thức ta có:
\(a^2.x^{2014}-5a.x^{2015}-24.x^{2016}=0\\ \Leftrightarrow a^2.1^{2014}-5a.1^{2015}-24.1^{2016}=0\\ \Leftrightarrow a^2-5a-24=0\\ \Leftrightarrow\left(a^2-8a\right)+\left(3a-24\right)=0\\ \Leftrightarrow a\left(a-8\right)+3\left(a-8\right)=0\\ \Leftrightarrow\left(a-8\right)\left(a+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=8\\a=-3\end{matrix}\right.\)
thank you very much!