Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Theo bài ra, ta có :
a. b = 300.15
a.b = 4500
ƯCLN ( a, b ) =15
=> a= 15. a' ; b= 15 . b'
Với : ( a' ; b' ) = 1
Suy ra :
15.a' . 15 . b' = 4500
15.15 . (a'.b') = 4500
225 . ( a'.b' ) = 4500
a'.b' = 4500 : 225
a' . b' = 20
Ta có bảng :
a' | 4 | 5 | 20 | 1 |
b' | 5 | 4 | 1 | 20 |
Suy ra:
a | 60 | 75 | 300 | 1 |
b | 75 | 60 | 1 | 300 |
vậy a;b= { ( 60;75 ) ; ( 75 ; 60 ) ; ( 300 ; 1 ) ; ( 1 ; 300) }
bạn **** cho mình nha
a)vì ƯCLN(a,b)=15
=>a=15m ,n=15n (ƯCLN(m,n)=1)
BCNN(a,b)=300
15m.n=300
=>m.n=20
có:
m=1 , n=20 => a=15 , b=300
m=4 , n=5 =>a=60 ,b=75
=> hai số phải tìm a và b là : (15 và 300) , (60 và 75)
b)vì ƯCLN (a,b)=10
=>a=10m , b=10n (ƯCLN(m,n)=1)
BCNN(a,b)=30
=>10m.n=30
=>m.n=3
có:
m=1 , n=3 =>a=10 , b= 30
=> a,b=10 và 30
Do ƯCLN(a; b) = 15 => a = 15 x m; b = 15 x n (m; n) = 1
=> BCNN(a; b) = 15 x m x n = 300
=> m x n = 300 : 15 = 20
Giả sử a > b => m > n do (m; n) = 1 => m = 20; n = 1 hoặc m = 5; n = 4
+) Với m = 20 và n = 1 thì a = 15 x 20 = 300; b = 15 x 1 = 15
+) Với m = 5 và n = 4 thì a = 15 x 5 = 75; b = 15 x 4 = 60
Vậy các cặp giá trị (m; n) thỏa mãn đề bài là: (300; 15); (75; 60); (15; 300); (60; 75).
Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b.
Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có
\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)
và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)
\(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)
\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)
\(=ab\)
Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)
Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)
\(b=15\) thì \(a=300\), thỏa mãn.
\(b=30\) thì \(a=150\), không thỏa.
\(b=45\) thì \(a=100\), không thỏa.
\(b=60\) thì \(a=75\), thỏa mãn.
Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\) là các cặp số a, b thỏa mãn yêu cầu bài toán.