K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2015

Gọi số cần tìm là a

=>a-5 chia hết cho 12;21;18

Ta có:12=22.3

21=3.7

18=2.32

=>BCNN(12;18;21)=22.32.7=252

Do số cần tìm sấp sỉ 1000 =>Số đó là bội của 252

Do 4.252>1000 =>Số cần tìm có thể là 4.252=1008(sấp sỉ 1000)

Hoặc số đó là 3.252=756(không sấp sỉ 1000 nên loại)

8 tháng 12 2015

a, 

Theo bài ra, ta có :

   a. b = 300.15

   a.b  = 4500

ƯCLN ( a, b ) =15  

=> a= 15. a' ; b= 15 . b'

Với : ( a' ; b' ) = 1

Suy ra : 

15.a' . 15 . b' = 4500

 15.15 . (a'.b') = 4500

  225 . ( a'.b' ) = 4500

                a'.b'  = 4500 : 225

                a' . b= 20

Ta có bảng : 

a'45201
b'54120

Suy ra:

a60753001
b75601300

 vậy a;b= { ( 60;75 ) ; ( 75 ; 60 ) ; ( 300 ; 1 ) ; ( 1 ; 300) }

bạn **** cho mình nha

 

19 tháng 2 2017

kết quả là..

23 tháng 11 2017

a)vì ƯCLN(a,b)=15

=>a=15m ,n=15n  (ƯCLN(m,n)=1)

BCNN(a,b)=300

15m.n=300

=>m.n=20

có:

m=1  , n=20  => a=15  , b=300

m=4  , n=5   =>a=60    ,b=75

=> hai số phải tìm a và b là  :  (15 và 300)  ,  (60 và 75)

b)vì ƯCLN (a,b)=10

=>a=10m , b=10n  (ƯCLN(m,n)=1)

BCNN(a,b)=30

=>10m.n=30

=>m.n=3

có:

m=1 , n=3 =>a=10 , b= 30

=> a,b=10 và 30

24 tháng 11 2018

Do ƯCLN(a; b) = 15 => a = 15 x m; b = 15 x n (m; n) = 1

=> BCNN(a; b) = 15 x m x n = 300

=> m x n = 300 : 15 = 20

Giả sử a > b => m > n do (m; n) = 1 => m = 20; n = 1 hoặc m = 5; n = 4

+) Với m = 20 và n = 1 thì a = 15 x 20 = 300; b = 15 x 1 = 15

+) Với m = 5 và n = 4 thì a = 15 x 5 = 75; b = 15 x 4 = 60

Vậy các cặp giá trị (m; n) thỏa mãn đề bài là: (300; 15); (75; 60); (15; 300); (60; 75).

27 tháng 10 2023

 Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b. 

 Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có

\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)

và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)

 \(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)

\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)

\(=ab\)

 Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)

 Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)

 \(b=15\) thì \(a=300\), thỏa mãn.

 \(b=30\) thì \(a=150\), không thỏa.

 \(b=45\) thì \(a=100\), không thỏa.

 \(b=60\) thì \(a=75\), thỏa mãn.

 Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\)  là các cặp số a, b thỏa mãn yêu cầu bài toán.