K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a-2ab+2b=0

=>\(a-2b\left(a-1\right)=0\)

=>\(a-1-2b\left(a-1\right)=-1\)

=>\(\left(a-1\right)\left(1-2b\right)=-1\)

=>(a-1)(2b-1)=1

=>\(\left(a-1;2b-1\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)

=>\(\left(a;b\right)\in\left\{\left(2;1\right);\left(0;0\right)\right\}\)

Bài 6: Số học sinh giỏi là \(48\cdot\frac16=8\) (bạn)

Số học sinh trung bình là \(48\cdot25\%=12\) (bạn)

Số học sinh khá là 48-8-12=40-12=28(bạn)

Bài 5:

Thể tích xăng còn lại chiếm:

\(100\%-\frac{3}{10}-40\%=60\%-30\%=30\%\) (tổng số xăng)

Thể tích xăng còn lại là:

\(60\cdot30\%=18\left(lít\right)\)

a: ||\(x:\left(-\frac23\right)+\frac12\) |+\(\frac56\) |\(\cdot\frac12=\frac34\)

=>||\(x:\left(-\frac23\right)+\frac12\) |\(+\frac56\) |\(=\frac34:\frac12=\frac32\)

\(\left|x:\left(-\frac23\right)+\frac12\right|+\frac56\ge\frac56\)

nên \(\left|x:\left(-\frac23\right)+\frac12\right|+\frac56=\frac32\)

=>\(\left|x:\left(-\frac23\right)+\frac12\right|=\frac32-\frac56=\frac96-\frac56=\frac46=\frac23\)

=>\(\left[\begin{array}{l}x:\left(-\frac23\right)+\frac12=\frac23\\ x:\left(-\frac23\right)+\frac12=-\frac23\end{array}\right.\Rightarrow\left[\begin{array}{l}x:\left(-\frac23\right)=\frac23-\frac12=\frac16\\ x:\left(-\frac23\right)=-\frac23-\frac12=-\frac46-\frac36=-\frac76\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac16\cdot\left(-\frac23\right)=-\frac{2}{18}=-\frac19\\ x=-\frac76\cdot\left(-\frac23\right)=\frac{14}{18}=\frac79\end{array}\right.\)

a: \(\left|-\frac23x+\frac38\right|\cdot\left(-\frac85\right)=-\frac{8}{15}\)

=>\(\left|\frac23x-\frac38\right|=\frac{8}{15}:\frac85=\frac{5}{15}=\frac13\)

=>\(\left[\begin{array}{l}\frac23x-\frac38=\frac13\\ \frac23x-\frac38=-\frac13\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac23x=\frac38+\frac13=\frac{17}{24}\\ \frac23x=-\frac13+\frac38=\frac{1}{24}\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac{17}{24}:\frac23=\frac{17}{24}\cdot\frac32=\frac{17}{16}\\ x=\frac{1}{24}:\frac23=\frac{1}{24}\cdot\frac32=\frac{3}{48}=\frac{1}{16}\end{array}\right.\)

3 giờ trước (9:58)

a: \(\frac{x-100}{24}+\frac{x-98}{26}+\frac{x-96}{28}=3\)

=>\(\left(\frac{x-100}{24}-1\right)+\left(\frac{x-98}{26}-1\right)+\left(\frac{x-96}{28}-1\right)=0\)

=>\(\frac{x-124}{24}+\frac{x-124}{26}+\frac{x-124}{28}=0\)

=>\(\left(x-124\right)\left(\frac{1}{24}+\frac{1}{26}+\frac{1}{28}\right)=0\)

=>x-124=0

=>x=124

b: \(\frac{x-1}{65}+\frac{x-3}{63}=\frac{x-5}{61}+\frac{x-7}{59}\)

=>\(\left(\frac{x-1}{65}-1\right)+\left(\frac{x-3}{63}-1\right)=\left(\frac{x-5}{61}-1\right)+\left(\frac{x-7}{59}-1\right)\)

=>\(\frac{x-66}{65}+\frac{x-66}{63}=\frac{x-66}{61}+\frac{x-66}{59}\)

=>\(\left(x-66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

=>x-66=0

=>x=66

c: \(\frac{x-28-124}{2011}+\frac{x-124-2011}{28}+\frac{x-2011-28}{124}=3\)

=>\(\left(\frac{x-28-124}{2011}-1\right)+\left(\frac{x-124-2011}{28}-1\right)+\left(\frac{x-28-2011}{124}-1\right)=0\)

=>x-28-124-2011=0

=>x=2011+124+28

=>x=2163

Bài 1:

a: \(A\left(x\right)=5x^4-7x^2-3x-6x^2+11x-30\)

\(=5x^4-7x^2-6x^2-3x+11x-30\)

\(=5x^4-13x^2+8x-30\)

\(B=-11x^3+5x-10+5x^4-2+20x^3-34x\)

\(=5x^4+20x^3-11x^3+5x-34x-2-10\)

\(=5x^4+9x^3-29x-12\)

b: A(x)+B(x)

\(=5x^4-13x^2+8x-30+5x^4+9x^3-29x-12\)

\(=10x^4-4x^3-21x-42\)

A(x)-B(x)

\(=5x^4-13x^2+8x-30-5x^4-9x^3+29x+12\)

\(=-9x^3-13x^2+37x-18\)

Bài 2:

a: \(M=2x^2+5x-12\)

Bậc là 2

Hệ số cao nhất là 2

Hệ số tự do là -12

b: M+N

\(=2x^2+5x-12+x^2-8x-1=3x^2-3x-13\)

c: P(2x-3)=M

=>\(P=\frac{2x^2+5x-12}{2x-3}=\frac{2x^2-3x+8x-12}{2x-3}\)

\(=\frac{x\left(2x-3\right)+4\left(2x-3\right)}{2x-3}\)

=x+4

a: Ta có: \(\hat{CAD}=\hat{ADE}\left(=55^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//DE

b: ta có: \(\hat{AFB}=\hat{ADC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên BE//CD

a: Ta có: \(\hat{AOD}+\hat{BOD}=180^0\) (hai góc kề bù)

=>\(\hat{BOD}=180^0-97^0=83^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\hat{AOE}<\hat{AOD}\left(56^0<97^0\right)\)

nên tia OE nằm giữa hai tia OA và OD

=>\(\hat{AOE}+\hat{EOD}=\hat{AOD}\)

=>\(\hat{EOD}=97^0-56^0=41^0\)

Ta có: \(\hat{AOE}+\hat{EOC}+\hat{COB}=180^0\)

=>\(\hat{EOC}=180^0-56^0-42^0=82^0\)

b: Trên cùng một nửa mặt phẳng bờ chứa tia OE, ta có; \(\hat{EOD}<\hat{EOC}\left(41^0<82^0\right)\)

nên tia OD nằm giữa hai tia OE và OC

=>\(\hat{EOD}+\hat{DOC}=\hat{EOC}\)

=>\(\hat{DOC}=82^0-41^0=41^0\)

Ta có: tia OD nằm giữa hai tia OE và OC

\(\hat{DOE}=\hat{DOC}\left(=41^0\right)\)

Do đó: OD là phân giác của góc EOC