Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) giả sử a< b
a = 8.a' và b = 8.b' (ƯCLN(a',b) = 1và a'<b')
a.b = 8.a'.8.b' = 768 a'.b' = 768 : 64 =12
a' = 1 và b' =12
hoặc a' = 3 và b' = 4
a = 8 và b = 96
hoặc a= 24 và b = 32
****
giả sử a< b
a = 8.a' và b = 8.b' (ƯCLN(a',b) = 1và a'<b')
a.b = 8.a'.8.b' = 768 a'.b' = 768 : 64 =12
a' = 1 và b' =12
hoặc a' = 3 và b' = 4
a = 8 và b = 96
hoặc a= 24 và b = 32
Cả câu a lẫn câu b đều không tồn tại nha bạn.
Câu a: \(a,b\) cùng chia hết cho 6 nên \(ab\) chia hết cho 36 (vô lí)
Câu b: \(a,b\) cùng chia hết cho 60 nên \(ab\) chia hết cho 3600 (vô lí)
Cũng có cách giải khác như sau:
Áp dụng định lí: \(ab=gcd\left(a,b\right)\times lcm\left(a,b\right)\)
Câu a: \(ab\) không chia hết cho \(gcd\left(a,b\right)\) nên vô lí.
Câu b: \(lcm\left(a,b\right)=3< gcd\left(a,b\right)\) nên cũng vô lí nốt.
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
ƯCLN(a;b)=32=>a=32k;b=32y (x;y)=1
=>32x.32y=6144
=>xy=6
=>(x;y)=(2;3);(3;2);(1;6);(6;1)
=>(a;b)=(64;96);(96;64);(32;192);(192;32)
vậy (a;b)=(64;96);(96;64);(32;192);(192;32)
UCLN(a,b) =2
=> a =2q ; b =2p ; (q;p) =1
=> ab =60 => 2q.2p =60
=>qp =15
2Theo bài ra, ta có:
(a; b) = 2 (1)
a.b = 60 (2)
Từ (1) => a chia hết cho 2 => đặt a = 2q (q, k thuộc N) (3)
b chia hết cho 2 => đặt b = 2k (UCLN(k; q) = 1) (4)
Thay vào (2), ta có:
2q.2k = 60
22.(q.k) = 60
4.(q.k) = 60
q.k = 15
=> (q; k) thuộc {(1; 15); (3; 5); (5; 3); (15; 1) (5)
Từ (3), (4), (5) => (a; b) thuộc {(2; 30); (6; 10); (10; 6); (30; 2)}
Vậy...