Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a/b = 2/3 => a2/b2 = 2.2/3.3 = 4/9
a2 + b2 = 208
a2 = 208 : (4 + 9).4
a2 = 208 : 13.4
a2 = 16.4
a2 = 64
=> a = 8
=> b = 8 : 2/3 = 12
Ta có \(\frac{a}{b}=\frac{2}{3}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{2}{3}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{4}{9}\)
Theo tính chất của tỉ lệ thức thì ta có \(\frac{a^2}{4}=\frac{b^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{a^2+b^2}{4+9}=\frac{208}{13}=16\)
\(\Rightarrow\hept{\begin{cases}a^2=16.4=64\\b^2=16.9=144\end{cases}}\)
Vì \(\frac{a}{b}=\frac{2}{3}\) nên a, b cùng âm hoặc cùng dương.
Vậy \(\orbr{\begin{cases}a=8,b=12\\a=-8,b=-12\end{cases}}\)
a : 3 dư 1 => \(a-1⋮3\)
b : 3 dư 2 => \(b-2⋮3\)
=> \(\left(a-1\right)\left(b-2\right)=ab-\left(2a+b\right)+2⋮3\)
Ta có: \(a-1⋮3\Rightarrow2a-2⋮3\)
=> \(2a-2+b-2=2a+b-4=2a+b-1-3⋮3\)
=> \(2a+b-1⋮3\)
Vì:\(ab-\left(2a+b\right)+2=ab-\left(2a+b-1\right)+1⋮3\)
Mà: \(2a+b-1⋮3\)
=> \(ab+1⋮3\)
=> ab : 3 dư 2
Vậy số dư của ab khi chia cho 3 dư 2
Hôm nay olm.vn sẽ hướng dẫn em sử dụng đẳng thức đồng dư để tìm số dư nhanh nhất em nhé
a:3 dư 1 ⇒ a \(\equiv\) 1 (mod 3)
b: 3 dư 2 ⇒ b \(\equiv\) 2 (mod 3)
Nhân vế với vế ta được: a.b \(\equiv\) 2 (mod 3) ⇒ ab chia 3 dư 2
a) Đặt m = n + k
Ta có 2m - 2n = 256
<=> 2n + k - 2n = 256
<=> 2n(2k - 1) = 256 (1)
Nhận thấy : 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 = 1 => 2k = 2 => k = 1
Khi đó 2n = 256
<=> n = 8
=> m = n + k = 9
Vậy m = 9 ; n = 8
b) Đặt m = n + k (k \(\inℕ^∗\))
Khi đó 2m - 2n = 1984
<=> 2n + k - 2n = 1984
<=> 2n(2k - 1) = 1984 (1)
Vì 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 \(\in\left\{31;1\right\}\)
Khi 2k - 1 = 31
=> 2k = 32
=> k = 5
Khi đó 2n = 64 => n = 6
=> m = n + k = 11
Khi 2k - 1 = 1
=> 2k = 2
=> k = 1
Khi đó 2n = 992
=> n \(\in\varnothing\)
Vậy n = 6 ; m = 11
1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5
\(\Rightarrow\)c phải là 5
Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b
\(\Rightarrow\)A có thể là 1955 hoặc là 9155
\(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{3}=\frac{b}{3}\)
\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{a^2+b^2}{4+9}=\frac{208}{13}=16\)
\(\Rightarrow a^2=4.16=64\Rightarrow a=8\) (vì \(a\in N\)*)
\(b^2=9.16=144\Rightarrow b=12\) (vì \(b\in N\)*)
Giải:
Ta có: \(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=k\Rightarrow a=2k,b=3k\)
Mà \(a^2+b^2=208\)
\(\Rightarrow\left(2k\right)^2+\left(3k\right)^2=208\)
\(\Rightarrow2^2.k^2+3^2.k^2=208\)
\(\Rightarrow k^2.\left(2^2+3^2\right)=208\)
\(\Rightarrow k^2.13=208\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
Mà \(a,b\in\) N*
\(\Rightarrow k=4\)
\(\Rightarrow a=8,b=12\)
Vậy \(a=8,b=12\)