![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ: \(a+b+c=1\Leftrightarrow a=1-b-c\)
Mà theo đề bài:
\(a\le b+1\le c+2\)
\(\Rightarrow1-b-c\le b+1\le c+2\)
\(\Rightarrow2\left(c+2\right)\ge1-b-c+b+1\)
\(\Rightarrow2c+4\ge2-c\Leftrightarrow3c+4\ge2\Leftrightarrow3c\ge-2\Leftrightarrow c\ge-\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3.\)
\(a=-3,75\)
\(b=\frac{15}{-4}=-3,75\)
Vì \(-3,75=-3,75\) nên \(a=b\)
Vậy : \(a=b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 0 ≤ a ≤ b + 1 ≤ c + 2
=> 0 ≤ a + b + 1 + c + 2 ≤ c + 2 + c + 2 + c + 2
=> 0 ≤ 4 ≤ 3c + 6 (vì a + b + c = 1)
=> 3c + 6 ≥ 4
=> 3c ≥ -2 => c ≥ -2/3
Dấu " = " xảy ra <=> a + b + c = 1 <=> a + b + (-2/3) = 1 <=> a + b = 5/3
Vậy GTNN của c là -2/3 khi đó a + b = 5/3
Chắc em nhầm cô ạ!! Làm lại là:
Vì: \(0\le a\le b+1\le c+2\Rightarrow a+b+c\le c+2+c+1+c\)
\(\Leftrightarrow1\le3c+3\left(a+b+c=1\right)\)Hay \(3c\ge-2\Rightarrow c\ge-\frac{2}{3}\)
Vậy \(Min_C=-\frac{2}{3}\) Khi đó: \(a=\frac{4}{3};b=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1
\(0\le a\le b+1\le c+2\\\)
\(\Rightarrow0\le a+b+1+c+2\le\left(c+2\right)+\left(c+2\right)+\left(c+2\right)=3c+6\)
\(\Rightarrow\left(a+b+c\right)+1+2\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(c\ge\frac{-2}{3}\)
Vậy GTNN của c là \(\frac{-2}{3}\)\(\Leftrightarrow\)a+b=\(\frac{5}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0
Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0
\(\Rightarrow\)Không tìm được a,b,c
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1
![](https://rs.olm.vn/images/avt/0.png?1311)