Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(b=\frac{31+9a}{8}\) thê vô cái còn lại được
\(\frac{11}{7}< \frac{a}{\frac{31+9a}{8}}< \frac{23}{29}\)
\(\Leftrightarrow\frac{11}{7}< \frac{8a}{31+9a}< \frac{23}{29}\)
\(\Leftrightarrow\hept{\begin{cases}56a>341+99a\\232a< 713+207a\end{cases}}\)
\(\Leftrightarrow28< a< -7\)
Không tồn tại a,b tự nhiên thỏa bài toán
tớ xin lỗi đề là 11\(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)
Giải:
Theo đề bài ta có:
\(8b-9a=31\Rightarrow b=\dfrac{31+9a}{8}\)
\(=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\) \(\in N\)
\(\Rightarrow\dfrac{a-1}{8}\in N\Leftrightarrow\left(a-1\right)⋮8\Rightarrow a=8k+1\left(k\in N\right)\)
Khi đó: \(b=\dfrac{31+9\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Rightarrow11\left(9k+5\right)< 17\left(8k+1\right)\Rightarrow37k>38\) \(\Rightarrow k>1\left(1\right)\)
Và \(29\left(8k+1\right)< 23\left(9k+5\right)\Rightarrow25k< 86\) \(\Rightarrow k< 4\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow1< k< 4\Leftrightarrow k\in\left\{2;3\right\}\)
Ta xét 2 trường hợp:
Trường hợp 1: Nếu \(k=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.2+1\\b=9.2+5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\)
Trường hợp 2: Nếu \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.3+1\\b=9.3+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\)
Vậy \(\left(a,b\right)=\left(17;23\right);\left(25;32\right)\)
a, 1 - 7x = 3x - 4
=> -7x - 3x = - 4 - 1
=> - 10x = - 5
=> x = 1/2
vậy_
b, đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=1-\frac{1}{3^{99}}\)
\(A=\frac{1-\frac{1}{3^{99}}}{2}\)
mk chỉ bt lm mấy phần hui à!
d)\(\frac{5}{17}+\frac{-4}{7}-\frac{20}{31}+\frac{12}{17}-\frac{11}{31}\)\(=\left(\frac{5}{17}+\frac{12}{17}\right)+\left(\frac{-20}{31}-\frac{11}{31}\right)+\frac{-4}{7}\)
\(=\frac{17}{17}+\frac{-31}{31}+\frac{-4}{7}\)\(=1+\left(-1\right)+\frac{-4}{7}\)\(=0+\frac{-4}{7}\)\(=-\frac{4}{7}\)
e)\(\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{20}{7}-\frac{13}{3}+\frac{13}{23}}\)
a, \(\frac{-22}{35}>\frac{-22}{177}>\frac{-103}{177}\)
=>\(\frac{-22}{35}>\frac{103}{177}\)
b, \(\frac{-17}{23}>\frac{-17}{31}>\frac{-25}{31}\)
=>\(\frac{-17}{23}>\frac{-25}{31}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Nguyễn Mai
a) Phân số trung gian là: \(\frac{-103}{35}\)
Ta có: \(\frac{-22}{35}>\frac{-103}{35}>\frac{-103}{177}\Rightarrow\frac{-22}{35}>\frac{-103}{177}\)
b) Phân số trung gian là: \(\frac{-25}{23}\)
Ta có: \(\frac{-17}{23}>\frac{-25}{23}>\frac{-25}{31}\Rightarrow\frac{-17}{23}>\frac{-25}{31}\)
\(\Leftrightarrow\frac{3x+1}{17}+\frac{3x+1}{19}+\frac{3x+1}{23}-\frac{3x+1}{29}-\frac{3x+1}{31}=0\)
\(\Leftrightarrow\left(3x+1\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\right)=0\)
\(\Leftrightarrow3x+1=0\) ( vì \(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\ne0\))
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
\(\frac{3x+1}{17}+\frac{3x+1}{19}+\frac{3x+1}{23}=\frac{3x+1}{29}+\frac{3x+1}{31}\)
\(\Rightarrow\frac{3x+1}{17}+\frac{3x+1}{19}+\frac{3x+1}{23}-\frac{3x+1}{29}-\frac{3x+1}{31}=0\)
\(\Rightarrow\left(3x+1\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\right)=0\)
Mà \(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\ne0\)
\(\Rightarrow3x+1=0\)
\(\Rightarrow x=-\frac{1}{3}\)
méc thây nhé