Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^4+ax^2+b = x^2(x^2+x+1)-x(x^2+x+1)+a(x^2+x+1)+x(1-a)+(b-a)$
$=(x^2+x+1)(x^2-x+a)+x(1-a)+(b-a)$
Vậy $x^4+ax^2+b$ khi chia $x^2+x+1$ có dư là $x(1-a)+b-a$
Để phép chia là chia hết thì:
$x(1-a)+(b-a)=0, \forall x$
$\Rightarrow 1-a=b-a=0$
$\Rightarrow a=b=1$
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
\(x^4+ax^2+b=\left(x^2+ax+b\right)\left(x^2+cx+1\right)\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+1\right)x^2+\left(a+bc\right)x+b\)
=> a+c =0 => a =-c
=>a+bc =0 => a -ab =0 => a( 1-b) =0 => a =0 hoặc b =1
=> a = ac +b+1
+ a =0 => b+1 =0 => b =-1
+ b =1 => a2 +a -2 =0 => a = 1 hoặc a =-2
Vậy (a;b) = ( 0;- 1) ; ( 1;1) ;( -2;1)
f(x) = x4 + ax3 + b ⋮ x2 - 1
=> x4 + ax3 + b = ( x2 - 1 ) . Q
Vì đẳng thức đúng với mọi x
+) Đặt x = 1
<=> f(1) = 1 + a + b = 0
<=> f(1) = a + b = -1 (1)
+) Đặt x = -1
<=> f(-1) = 1 - a + b = 0
<=> f(-1) = a - b = 1 (2)
Từ (1) và (2) ta có tổng và hiệu của a và b
a là : ( -1 + 1 ) : 2 = 0
b là : ( -1 - 1 ) : 2 = -1
Vậy a = 0; b = -1