Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
Do bậc của đa thức bị chia f( x) là : 3 . Bậc của đa thức chia g(x) là : 2 . Nên bậc của đa thức thương là : 1 . Và có dạng : x + m
Vì phép chia là phép chia hết , ta có :
\(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+m\right)\)
⇔ \(x^3+ax^2+2x+b=x^3+mx^2+x^2+mx+x+m\)
⇔ \(x^3+ax^2+2x+b=x^3+x^2\left(m+1\right)+x\left(m+1\right)+m\)
Đồng nhất hệ số , ta được :
+) m + 1 = 2 ⇔ m = 1
+) m + 1 = a = 2
+) m = b = 1
Vậy ,..............
Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được:
\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)
Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì:
\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).