Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{11\cdot15}+\frac{2}{15\cdot19}+...+\frac{2}{51\cdot55}\)
\(A=\frac{2}{4}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)\)
\(A=\frac{1}{2}\cdot\frac{4}{55}\)
\(A=\frac{2}{55}\)
có phải thế này không mình cũng không hiểu cho lắm \(\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)hay là \(\frac{1}{\frac{a+1}{\frac{b+1}{c+1}}}\)
Cảm ơn lòng tốt của bạn, mình ko cần tới 3 k mỗi ngày đâu, như vậy hơi nhiều quá!.
Mình chỉ cần ko ai k sai thôi!
Ta có: \(a,b,c\inℕ^∗;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Vì \(a,b,c\)có vai trò như nhau nên giả sử \(a\le b\le c\Rightarrow\frac{1}{c}\le\frac{1}{b}\le\frac{1}{a}\Rightarrow\frac{1}{3a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Leftrightarrow\frac{4}{12a}\ge\frac{4}{5}\Rightarrow\Leftrightarrow12a\le5\Rightarrow a\le0\)
Điều này không đúng vì \(a>0\). Do đó: Không có 3 số tự nhiên \(a,b,c\)
nào thỏa phương trình trên (Phương trình vô nghiệm)
548654545885455555555555555555555555555555555555555555555555555555555
a3 + 3a2 + 5 = 5b
=> a2(a + 3) + 5 = 5b
=> a2.5c + 5 = 5b (vì a + 3 = 5c)
=> a2.5c - 1 + 1 = 5b - 1 (chia cả 2 vế cho 5) (1)
=> c - 1 = 0 hoặc b - 1 = 0
+) b = 1, khi đó ko thoả mãn
+) c = 1 => a = 2 => b = 2
tại sao c-1 hoặc b-1 =0 nhi giải được cho