Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
Ta có:\(\frac{a}{5}=\frac{b}{3}=\frac{c}{7}=>\frac{3a}{15}=\frac{5b}{15}=\frac{7c}{49}\)
Mà \(3a-5b+7c=86\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{3a}{15}=\frac{5b}{15}=\frac{7c}{49}=\frac{3a-5b+7c}{15-15+49}=\frac{86}{49}\)(vì \(3a-5b+7c=86\))
Do đó: \(\frac{a}{5}=\frac{86}{49}=>a=\frac{86}{49}\cdot5=\frac{430}{49}\)
\(\frac{b}{5}=\frac{86}{49}=>b=\frac{86}{49}\cdot5=\frac{258}{49}\)
\(\frac{c}{7}=\frac{86}{49}=>c=\frac{86}{49}\cdot7=\frac{86}{7}\)
Vậy \(a=\frac{430}{49};b=\frac{258}{49};c=\frac{86}{7}\)
Chúc bạn Hk tốt!!!!
ta có \(\frac{a}{5}=\frac{b}{3}=\frac{c}{7}=\frac{3a}{15}=\frac{5b}{15}=\frac{7c}{49}\)
áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{5}=\frac{b}{3}=\frac{c}{7}\)=\(\frac{3a}{15}=\frac{5b}{15}=\frac{7c}{49}\)=\(\frac{3a-5b+7c}{15-15+49}\)=\(\frac{86}{49}\)
do đó: \(\frac{a}{5}\)=\(\frac{86}{49}\)\(\Rightarrow\)a=\(\frac{86}{49}\).5=\(\frac{430}{49}\)
\(\frac{b}{3}\)=\(\frac{86}{49}\)\(\Rightarrow\)b=\(\frac{86}{49}.3\)=\(\frac{258}{49}\)
\(\frac{c}{7}=\frac{86}{49}\)\(\Rightarrow\)c=\(\frac{86}{49}.7\)= \(\frac{86}{7}\)
vậy a=\(\frac{430}{49},b=\frac{258}{49},c=\frac{86}{7}\)
chúc bạn học tốt ~~~
Từ ac = b2 (1) => abc = b3
ab = c2 => abc = c3
=> b3 = c3 => b = c thay vào (1)
=> ab = b2 <=> (a - b).b = 0 <=> \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)
=> a = b = c
Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)
a, x/2-2/5=1/10
x/2=1/10+2/5
x/2=1/2
Suy ra x=1
b, 2/3.(x-3/y)=1/21
x-3/y=1/21:2/3
x-3/y=1/14
Vi 7.2=14
Suy ra (x-3).2=1
x-3=1:2
x-3=0,5
x=0,5+3
x=3,5
c, Vi 3/x+y/3=5/6
Suy ra x+3=6
x=3
Vi x=3
Suy ra 3+y=5
Suy ra y=2
Nho ****
biết giải bài 2
x/12=y/14=x.y/12.24=98/288=49/144
=> x/12=49/144=> 49/12
=> y/14=49/144=> 343/72
mới lớp 2 thôi
mình ko bt có đúng ko
\(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)
=> \(\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}=\frac{3a+9-5b+10+7c-7}{15-15+49}\)
\(=\frac{3a-5b+7c+12}{49}=\frac{86+12}{49}=\frac{98}{49}=2\)
=> \(\hept{\begin{cases}\frac{a+3}{5}=2\\\frac{b-2}{3}=2\\\frac{c-1}{7}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a+3=10\\b-2=6\\c-1=14\end{cases}}\Leftrightarrow\hept{\begin{cases}a=7\\b=8\\c=15\end{cases}}\)