\(\dfrac{b}{2}\) = \(\dfrac{c}{3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^

Giải:

a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)

Áp dụng tính chất của dãy tỉ sô bằng nhau:

\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)

\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)

b) \(a:b:c=3:4:5\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)

\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)

Áp dụng tính chất của dãy tỉ sô bằng nhau:

\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)

31 tháng 8 2017

Bài 1:

a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)

7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)

=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)

=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)

b) Tương tự câu a

c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)

=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)

Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1

=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)

d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)

Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)

=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2

Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)

Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)

Bài 2:

Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)

Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi

=> chiều rộng = 18(m) => chiều dài = 27(m)

31 tháng 8 2017

thánh nhân xuất hiện đê

14 tháng 10 2016

Tìm các số a, b, c  biết rằng :

     1 . Ta có:       \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)

 Ap dụng tính chất dãy tỉ số bắng nhau ta dược :

                    \(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)

Nên : a/20=1/3\(\Leftrightarrow\)     a=1/3.20    \(\Leftrightarrow\)a=20/3

        b/9=1/3   \(\Leftrightarrow\)      b=1/3.9     \(\Leftrightarrow\)    b=3

        c/6=1/3   \(\Leftrightarrow\)      c=1/3.6   \(\Leftrightarrow\)      c= 2

14 tháng 10 2016

mấy bài sau làm tương tự nhu câu 1

19 tháng 10 2016

i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)

Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k= 792 => k3 = 8 => k = 2

=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)

19 tháng 10 2016

Bài g tương tự bài i

e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)

Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)

Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2

Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)

Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)

30 tháng 9 2017

Các bạn chỉ cần giúp mk câu b, c, e, f,

15 tháng 12 2017

bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

a: \(=\left(15x^2y^3-12x^2y^3\right)+\left(7x^2-12x^2\right)+\left(-8x^3y^2+11x^3y^2\right)\)

\(=3x^2y^3-5x^2+3x^3y^2\)

bậc là 5

b: \(=\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)

\(=\dfrac{5}{2}x^5y+\dfrac{7}{3}xy^4-\dfrac{1}{4}x^2y^3\)

Bậc là 6

c: \(=5xy-2xy+4xy-y^2+3x-2y\)

\(=-y^2+3x-2y+7xy\)

Bậc là 2

5 tháng 1 2018

Từ giả thiết ta có \(\frac{15a-10b}{25}=\frac{6c-15}{9}=\frac{10b-6c}{4}\)

\(=\frac{0}{38}=0\)

(Theo t/c day ti so bang nhau)

Suy ra \(\hept{\begin{cases}15a-10b=0\\6c-15a=0\end{cases}\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}}\Rightarrow\hept{\begin{cases}b=\frac{3}{2}a\\c=\frac{5}{2}a\end{cases}}\)

Mà a^2+275=bc Suy ra \(^{a^2+275=\frac{15}{4}a^2\Rightarrow a^2=100\Rightarrow a=\pm10}\)

ĐS: a=10; b=15; c=25 và a=-10; b=-15; c=-25

5 tháng 1 2018

Sửa chút \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)