Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Đổi chỗ các trung tỉ cho nhau ta được: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)\(\left(đpcm\right)\)
b)\(\Leftrightarrow\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
Trừ cả 2 vế cho 2 . Đến đây thì dễ rồi.
Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
\(\Rightarrow\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2002k-2003k\right)\left(2003k-2004k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(VP=\left(c-a\right)^2=\left(2004k-2002k\right)^2=\left(2k\right)^2=4k^2\)
\(\Rightarrow VT=VP\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
4) Ta có :\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}=\frac{a+b+c+1-1+2}{2+3+4}=\frac{a+b+c+2}{9}\)(1)
=> 2a + 5 = 9
=> 2a = 4
=> a = 2
Thay a vào (1) ta có :
\(\frac{b-1}{3}=\frac{c+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{b-1}{3}=\frac{3}{2}\\\frac{c+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2\left(b-1\right)=9\\2\left(c+2\right)=12\end{cases}}\Rightarrow\hept{\begin{cases}2b-2=9\\2c+4=12\end{cases}}\Rightarrow\hept{\begin{cases}2b=11\\2c=8\end{cases}\Rightarrow\hept{\begin{cases}b=5,5\\c=4\end{cases}}}\)
Vậy a = 2 ; b = 5,5 ; c = 4
5) Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
=> \(\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
4(a - b)(b - c) = (c - a)2
=> 4(2002k - 2003k)(2003k - 2004k) = (2002k - 2004k)2
=> 4(-k)(-k) = (-2k)2
=> (-2)2(-k)2 = (-2k)2
=> 22k2 = (2k)2
=> (2k)2 = (2k)2
=> 4(a - b)(b - c) = (c - a)2 (đpcm)