\(a+b=a.b=\frac{a}{b}\) và \(b\ne0\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Thế 

làm

đi ~.~

24 tháng 10 2017

mk ko bt 123

\(\frac{a}{c}=\frac{a-b}{b-c}\Rightarrow a\left(b-c\right)=c\left(a-b\right)\)           (1)

\(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\)                  (2)

\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\)                  (3)

\(Từ\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)điều phải chứng minh

6 tháng 3 2020

a) 

Thay x = -1 ( thỏa mãn ĐKXĐ ) vào biểu thức B , ta có :

\(B=\frac{2+1}{-1}=\frac{3}{-1}=-3\)

b) \(A=\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\)

\(A=\frac{1}{x-2}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x+2}\)

\(A=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{3x}{\left(x-2\right)\left(x+2\right)}\)

c) Ta có : 

\(P=A.B\)

\(P=\frac{3x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)

Mà P = 1/2

\(\Leftrightarrow\frac{3x}{\left(x-2\right)\left(x+2\right)}.\frac{-\left(x-2\right)}{x}=\frac{1}{2}\)

\(\Leftrightarrow\frac{3}{x+2}.\frac{-1}{1}=\frac{1}{2}\)

\(\Leftrightarrow\frac{-3}{x+2}=\frac{1}{2}\)

\(\Leftrightarrow x+2=-6\Leftrightarrow x=-8\)( thỏa mãn )

d) P nguyên dương

\(\Leftrightarrow\frac{-3}{x+2}\)nguyên dương

<=> x + 2 thuộc Ư(3) { -1 ; -3 }

Bảng tìm x

x+2-1-3
x-3(Nhận)-5(loại)

Vậy ....................

6 tháng 3 2020

cảm ơn bn nhé nhg mk hỏi sao x +2x+ x= 3x đc z mk tưởng là 4x

6 tháng 12 2016

sai đề

6 tháng 12 2016

Theo mình thì \(\frac{1}{a}\)\(\frac{1}{b}\)=1 không thể xảy ra vì 1/a - 1/b =1 => (b-a)/(ab)=1 

                                                                       hay b-a=a.b   <=> a=b=0 (trái với đề bài)

13 tháng 1 2020

T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)

=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)

=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)

=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)

=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)

=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)

=> trong 3 số a,b,c có  2 số đối nhau  ( đpcm)

Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)

                                                                                    \(=-\frac{1}{c^{2019}}\)(1)

\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\)  (2)

Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)  (đpcm)

13 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)

Thay vào tính nốt

5 tháng 6 2019

Ta có : \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow a^2+b^2+2ab=c^2\)

\(\Rightarrow c^2-a^2-b^2=2ab\)

Tương tự :

\(b^2-c^2-a^2=2ac\)

\(a^2-b^2-c^2=2ab\)

\(\Leftrightarrow\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Mà \(a+b+c=0\)\(\Rightarrow a^3+b^3+c^3=3abc\)( cái này rất dễ chứng minh nha , bạn có thể tham khảo trên mạng hoặc nhắn tin cho mình )

\(\Leftrightarrow\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

5 tháng 6 2019

#)Giải :

Ta có : \(a+b+c=0\Rightarrow a^2=\left(b+c\right)^2\)

\(\Rightarrow a^2-b^2-c^2=2ab\)

Tương tự, ta có :

\(\sum\)\(\frac{a^2}{a^2-b^2-c^2}=\)\(\sum\)\(\frac{a^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

9 tháng 3 2020

\(\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(a+c\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)Thay vào M đc

\(M=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)\(\Leftrightarrow M=\frac{1}{2}\left(\frac{a^3+b^3+c^3}{abc}\right)\)

Tháy hơi sai đề rồi