Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ta co : a:b=4:5
=> a=4d;b=5d
=> BCNN{a;b}=4.5.d=20.d=140
=>d =140:20=7
=> a=7.4=28;b=7.5=35
Vay a=28;b=35
Bài 2:
Lời giải:
Gọi $ƯCLN(a,b)=d$. Đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Ta có:
$a+b=dx+dy=d(x+y)=42$
$BCNN(a,b)=dxy=72$
$\Rightarrow d=ƯC(42,72)$
$\Rightarrow ƯCLN(42,72)\vdots d\Rightarrow 6\vdots d\Rightarrow d\in \left\{1; 2; 3; 6\right\}$
Nếu $d=1$ thì:
$x+y=42; xy=72$.
Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,72), (72,1), (8,9), (9,8)$
Trong các cặp số này không có cặp nào có tổng bằng 42 (loại)
Nếu $d=2$ thì $x+y=21; xy=36$
Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,36), (4,9), (9,4), (36,1)$
Trong các cặp số này không có cặp nào có tổng bằng 21 (loại)
Nếu $d=3$ thì $x+y=14; xy=24$
Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,24), (3,8), (8,3), (24,1)$
Trong các cặp số này không có cặp nào có tổng bằng 14 (loại)
Nếu $d=6$ thì $x+y=7, xy=12$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,11), (3,4), (4,3), (11,1)$
Mà $x+y=7$ nên $(x,y)=(3,4), (4,3)$
$\Rightarrow (a,b)=(18, 24), (24,18)$
tim hai so a va b biet a.b=2250va UCLN(a,b)=15
tin 2 so a va b biet rang a.b=1176;BCNN(a,b)=84 va a>b
LINK DAY VAO DAY NHA Trần Thành Trung Tìm số tự nhiên a và b (a<b) biết a+ b =42 và BCNN(a,b)=72 ROI TICK MIK NHA
Gọi ƯCLN ( a ; b ) = d ( d \(\in\) N* )
Theo đề bài ta có:
a = 4d
b = 5d
\(\Rightarrow\) a . b = 140
\(\Rightarrow\) 4d . 5d = 140
\(\Rightarrow\) 20d = 140
\(\Rightarrow\) d = 140 : 20
\(\Rightarrow\) d = 7
\(\Rightarrow\) a = 4 . 7 = 28
b = 5 . 7 = 35
Vậy a = 28 ; b = 35
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn :
(35;28)