\(a_1\),\(a_2\),\(a_3\),........">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+a_3+...+a_9-9}{9+8+7+...+1}=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)

\(\Rightarrow a_1=1+9=10\)

\(\Rightarrow a_2=8+2=10\)

\(\Rightarrow a_3=7+3=10\)

...

\(\Rightarrow a_9=1+9=10\)

Vậy \(a_1=a_2=a_3=...=a_9=10\)

1 tháng 12 2016

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)

Áp dụng dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-1}{1}=\frac{a_1+a_2+...+a_9-\left(1+2+3+...+9\right)}{9+8+7+...+1}=\frac{90-45}{45}=1\)

\(\Rightarrow a_1-1=9\)

\(a_2-2=8\)

\(a_3-3=7\)

...................

\(a_9-9=1\)

Vậy \(a_1=a_2=a_3=a_4=a_5=a_{ }_6=a_7=a_8=a_9=10\)

1 tháng 12 2015

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}\)

\(=\frac{90-45}{45}=\frac{45}{45}=1\)

=> a1 - 1 = 9 => a1 = 10

     a2 - 2 = 8 => a2 = 10

.........................

     a9 - 9 = 1 => a9 = 10

KL: a1 = a2 =.......= a9 = 10

1 tháng 12 2015

a1 = 2

a2 = 3

a= 4

a= 5

a= 6

a= 7

a= 8

a= 9

a= 10

18 tháng 10 2015

Bài này giống bài bình thường khác mỗi nhiều số

16 tháng 7 2017

Áp dụng  tính chất của dãy tỉ số bằng nhau:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_9}{a_1}=\frac{a_1+a_2+...+a_9}{a_2+a_3+...+a_1}=1\)

Ta có: \(\frac{a_1}{a_2}=1\Rightarrow a_1=a_2\) (1)

\(\frac{a_2}{a_3}=1\Rightarrow a_2=a_3\) (2)

..........

\(\frac{a_9}{a_1}=1\Rightarrow a_9=a_1\) (9)

Từ (1),(2),...(9) suy ra a1 = a2 = a3 = .... = a9 (đpcm)

19 tháng 7 2016

a.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)

Ta có:

\(\frac{a1-1}{9}=1\Rightarrow a1=9+1=10\)

\(\frac{a2-2}{8}=1\Rightarrow a2=8+2=10\)

...

\(\frac{a9-9}{1}=1\Rightarrow a9=1+9=10\)

b.

Cách 1:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Ta có:

\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)

Cách 2:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1+3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)

Ta có:

\(2x+1=0\Rightarrow x=-\frac{1}{2}\)

\(3y-2=0\Rightarrow y=\frac{2}{3}\)

 

19 tháng 7 2016

thank you

11 tháng 8 2018

Áp dụng TCCDTSBN, ta có :

\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)

=> a1/a2 = 1 => a1 = a2

....

a9/a1 = 1 => a9 = a1

Từ tất cả điều trên => đpcm

8 tháng 8 2015

Áp dụng dãy tỉ số bàng nhau ta có :

     \(\frac{a1+1}{9}=\frac{a2+8}{8}=...=\frac{a9+9}{1}=\frac{a1+1+a2+2+..a9+9}{1+2+3+..+9}=\frac{\left(a1+a2+..+a9\right)+1+2+..+9}{1+2+3+..+9}\)

       \(=\frac{90+45}{45}=\frac{135}{45}=3\)

=> a1+1 = 27 => a 1 = 26 

=>a2+ 2 = 24 => a2 = 22 

...............................

tương tự tìm tiếp