Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\)2(9x2+6x+1)=(3x+1)(x-2)
\(\Leftrightarrow\)2(3x+1)2-(3x+1)(x-2)=0
\(\Leftrightarrow\)(3x+1)[2(3x+1)-(x-2)]=0
\(\Leftrightarrow\)(3x+1)(6x+2-x+2)=0
\(\Leftrightarrow\)(3x+1)(5x+4)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\\5x+4=0\Leftrightarrow5x=-4\Leftrightarrow x=\frac{-4}{5}\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}}\)
Vậy phương trình trên có tập nghiệm \(S=\left\{-\frac{1}{3};-\frac{4}{5}\right\}\)
dap an ra \(\left(x-3+\sqrt{6}\right).\left(x-3-\sqrt{6}\right)\)
a,3xn(6xn−3+1)−2xn(9xn−3−1)a,3xn(6xn−3+1)−2xn(9xn−3−1)
=xn[3(6xn−3+1)−2(9xn−3−1)]=xn[3(6xn−3+1)−2(9xn−3−1)]
=xn(18xn−3+3−18xn−3+2)=xn(18xn−3+3−18xn−3+2)
=5xn=5xn
b,5n+1−4.5nb,5n+1−4.5n=5n.5+5n.4=5n(5+4)=45n=5n.5+5n.4=5n(5+4)=45n
c,62.64−43(36−1)c,62.64−43(36−1)
=66−43.36+43=66−43.36+43
=26.36−43.36+43=26.36−43.36+43
=36(26−43)+43=36(26−43)+43
=36[(22)3−43]+43=36.0+43=43=64
~Hok tốt~
TL:
a)
=\(18x^{2n-3}+3x^n-18x^{2n-3}+2x^n\)
=\(6x^n\)
b)
=\(5^n.5-4.5^n\)
=\(5^n\left(5-4\right)\)
=\(5^n\)
vậy.......
hc tốt
\(A=\left(2x\right)^2+2.2x.\frac{1}{4}+\frac{1}{16}+\frac{1}{16}=\left(2x+\frac{1}{4}\right)^2+\frac{1}{16}\ge\frac{1}{16}\)
=> GTNN(A)=\(\frac{1}{16}\)
\(B=9x^2+2.3x.1+1+14=\left(3x+1\right)^2+14\ge14\)
=> GTNN(B)=14
a)
\(x^2+x+\frac{1}{4}=4x^2\)
\(x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(2x\right)^2\)
\(\left(x+\frac{1}{2}\right)^2=\left(2x\right)^2\)
\(\Leftrightarrow x+\frac{1}{2}=2x\)
\(\Leftrightarrow x=\frac{1}{2}\)
2)
\(3x^2+6x+100\)
\(=3\left(x^2+2x+\frac{100}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot1+1^2+\frac{100}{3}\right)\)
\(=3\left[\left(x+1\right)^2+\frac{100}{3}\right]\)
\(=3\left(x+1\right)^2+100\ge100\forall x\left(đpcm\right)\)
Đề bài là phân tích đa thức thành nhân tử hả bn?
\(9x^2+6x+1\)
\(=\left(3x\right)^2+2.3x+1^2\)
\(=\left(3x+1\right)^2\)
hok tốt nhé!
Ta có 9x^2 + 3x + 3x + 1
= ( 9x^2 + 3x) + ( 3x + 1)
= 3x ( 3x+ 1) + ( 3x+ 1)
= (3x+ 1) ( 3x+ 1)
= (3x+ 1)^2