Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).
Tổng hai số còn lại là \(36\).
Gọi hai số đó là \(a,b\).
Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)
Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min.
Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.
Không mất tính tổng quát, giả sử \(a>b>0\)
Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ.
Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì:
\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\).
Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất.
Với \(b=3\Rightarrow a=33\)loại.
Với \(b=5\Rightarrow a=31\)(thỏa mãn)
Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).
Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).


Câu 1: Cho x2−6x+1=0x2−6x+1=0.Tính giá trị biểu thức B=x4+8x2+1
/x^2

Gọn nhất nè:
🔎 Đề bài:
Tìm các bộ số thực \(x_{1} , x_{2} , \ldots , x_{20}\) sao cho:
\(x_{i} = \sum_{j = 1 \\ j \neq i}^{20} x_{j}^{2} \text{v}ớ\text{i}\&\text{nbsp};\text{m}ọ\text{i}\&\text{nbsp}; i\)
✅ Giải:
Gọi \(S = \sum_{j = 1}^{20} x_{j}^{2}\), ta có:
\(x_{i} = S - x_{i}^{2} \Rightarrow x_{i}^{2} + x_{i} - S = 0\)
Tất cả \(x_{i}\) là nghiệm của cùng một phương trình này ⇒ chỉ có tối đa 2 giá trị khác nhau trong bộ 20 số.
Giả sử mọi \(x_{i} = x\):
\(x = 19 x^{2} \Rightarrow x \left(\right. 19 x - 1 \left.\right) = 0 \Rightarrow x = 0 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; x = \frac{1}{19}\)
✅ Kết luận:
\(\boxed{\left(\right. x_{1} , x_{2} , \ldots , x_{20} \left.\right) = \left(\right. 0 , 0 , \ldots , 0 \left.\right) \text{ho}ặ\text{c} \left(\right. \frac{1}{19} , \ldots , \frac{1}{19} \left.\right)}\)
Chỉ có 2 bộ nghiệm duy nhất.
Bạn hỏi:
Tìm tất cả các bộ số thực (có 20 số) sao cho mỗi số trong bộ bằng tổng bình phương của 19 số còn lại.
Giải thích nhanh:
Giả sử bộ số là:
\(x_{1} , x_{2} , \ldots , x_{20}\)
Với điều kiện:
\(x_{i} = \sum_{j = 1 \\ j \neq i}^{20} x_{j}^{2} , \forall i = 1 , 2 , \ldots , 20\)
Bước 1: Viết lại điều kiện
\(x_{i} = S - x_{i}^{2} , \text{v}ớ\text{i}\&\text{nbsp}; S = \sum_{j = 1}^{20} x_{j}^{2}\)
Từ đó ta có:
\(x_{i} + x_{i}^{2} = S \Rightarrow x_{i}^{2} + x_{i} - S = 0 , \forall i\)
Bước 2: Phân tích
Mọi \(x_{i}\) đều là nghiệm của phương trình:
\(t^{2} + t - S = 0\)
Phương trình có nghiệm:
\(t = \frac{- 1 \pm \sqrt{1 + 4 S}}{2}\)
Bước 3: Giả sử trong 20 số có \(k\) số bằng nghiệm thứ nhất, còn lại \(20 - k\) số bằng nghiệm thứ hai.
Gọi hai nghiệm là:
\(a = \frac{- 1 + \sqrt{1 + 4 S}}{2} , b = \frac{- 1 - \sqrt{1 + 4 S}}{2}\)
Số \(x_{i}\) chỉ nhận giá trị \(a\) hoặc \(b\).
Bước 4: Viết tổng bình phương \(S\)
\(S = k a^{2} + \left(\right. 20 - k \left.\right) b^{2}\)
Bước 5: Áp dụng điều kiện
Như đã nói ở Bước 1:
\(S = a^{2} k + b^{2} \left(\right. 20 - k \left.\right)\)
Mà \(a\) và \(b\) thỏa:
\(a^{2} + a - S = 0 , b^{2} + b - S = 0\)
Bước 6: Hệ phương trình
Ta có hai ẩn là \(S\) và \(k\) (số lượng các phần tử bằng \(a\)):
\(\left{\right. S = k a^{2} + \left(\right. 20 - k \left.\right) b^{2} \\ a = \frac{- 1 + \sqrt{1 + 4 S}}{2} \\ b = \frac{- 1 - \sqrt{1 + 4 S}}{2}\)
Bước 7: Thay \(a^{2} = S - a\), \(b^{2} = S - b\) (từ phương trình ở bước 1)
\(S = k \left(\right. S - a \left.\right) + \left(\right. 20 - k \left.\right) \left(\right. S - b \left.\right) = 20 S - k a - \left(\right. 20 - k \left.\right) b\)\(S = 20 S - k a - 20 b + k b\)\(S - 20 S = - k a - 20 b + k b\)\(- 19 S = k \left(\right. b - a \left.\right) - 20 b\)
Bước 8: Giải ra \(k\):
\(k \left(\right. b - a \left.\right) = - 19 S + 20 b\)\(k = \frac{20 b - 19 S}{b - a}\)
Bước 9: Lưu ý \(k\) phải là số nguyên từ 0 đến 20, \(S \geq 0\), và \(a , b\) theo \(S\).
Tóm lại:
- Bộ số gồm 20 phần tử, mỗi phần tử bằng \(a\) hoặc \(b\), nghiệm phương trình \(t^{2} + t - S = 0\).
- Số lượng \(k\) phần tử bằng \(a\) thỏa công thức ở trên.
- Dựa vào điều kiện này, có thể tìm các giá trị \(S\) sao cho \(k \in \left{\right. 0 , 1 , \ldots , 20 \left.\right}\) nguyên.
Kết luận:
- Có nhiều bộ số thỏa mãn, được xác định bởi \(S\) và \(k\) thỏa điều kiện.
- Ví dụ đơn giản:
- Nếu tất cả bằng số \(a\), tức \(k = 20\), thì:
\(S = 20 a^{2}\)
và a^2 + a - S = 0 \Rightarrow a^2 + a - 20 a^2 = 0 \Rightarrow -19 a^2 + a = 0 \Rightarrow a(1 - 19 a) = 0 \] ⇒ \( a=0 hoặc \(a = \frac{1}{19}\)
Nếu \(a = 0\), thì tất cả số bằng 0 ⇒ thoả mãn.
Nếu \(a = \frac{1}{19}\), ta kiểm tra lại điều kiện.
- Nếu tất cả bằng số \(a\), tức \(k = 20\), thì:

Gọi 2 số cần tìm là x, y, tao đề bài ta có:
\(\frac{x}{y}=0,9=>\frac{x^2}{y^2}=\frac{81}{100}=>\frac{x^2}{81}=\frac{y^2}{100};x^2+y^2=72.4\)
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\frac{x^2}{81}=\frac{y^2}{100}=\frac{x^2+y^2}{81+100}=\frac{72.4}{181}=\frac{2}{5}\)
=> \(\frac{x^2}{81}=\frac{2}{5}=>x^2=\frac{162}{5}=>x=\frac{9\sqrt{10}}{5}\)(Do x là số nguyên dương => \(x\ne-\frac{9\sqrt{10}}{5}\))
=> làm tương tự vậy thì đc : y = \(2\sqrt{10}\)
Vậy...