Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
5^1992=(5^4)^498=625^498=0625^498=(.....0625)
vậy bốn chữ số tận cùng của 5^1992 là 0625
ta có:5^8=390625
số có tận cùng là 0625 thì nâng lên bất cứ số nào cũng có tận cùng là 0625
ok
2100=(220)5=(...76)5=(...76)
7^1991=7^1991.7^3=(74)^497.343=(...01)^497.343=(....01).343=....43
5^1992=(5^4)^498=625^498=0625^498=(...0625)
Chu so tan cung cua so 2^100 la 4, chu so tan cung cua 7^1991 la 7
Mk làm bằng mẹo đó nha!
1, chu so tan cung cua 4^21=4^1+4^20=(...1) + (...6) =(...6) vay 4^21 co tan cung la 6
4^21=(44)5.4=165.4=(...6).4=.....4
=>c/số tận cùng của 4^21 là 4
953=(92)26.9=8126.9=(......1).9=(.....9)
=>9^53 có tận là 9
3^103=(3^4)^25.3^3=81^25.27=(......................1).27=(.......7)
=>3^103 có tận là 7
Lay 4 chu so thi dong du voi 10000
5^1994=5^2*(5^4)^498
5^4=625 dong du 625 mod 10000
625^2=390625 dong du 625 mod 10000
=>625^n luon dong du 625 mod 10000
=>(5^4)^498 dong du 625 mod 10000
=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000
hay la 5^1994 dong du 15625 mod 10000
Vay 4 chu so tan cung cua 5^1994 la 5625
kết luận chữ số tận cũg có 4 chữ số