K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Gọi các số cần tìm lần lượt là a,b,c (a,b,c \(\in N^{\text{*}}\))

Theo đề bài : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) . Nếu a > 3, b > 3 , c > 3 thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (vô lý) . Vậy trong ba số a,b,c tồn tại ít nhất một số không lớn hơn 3. Giả sử a là số bé nhất thì \(a\le3,a< b,a< c\) \(\Rightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\Rightarrow a\le3\)

Vì a là số tự nhiên nên a = 1 hoặc a = 2 hoặc a = 3

Nếu a = 1 thì \(\frac{1}{b}+\frac{1}{c}=0\) (vô lý)

Nếu a = 2 thì \(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\Leftrightarrow2b+2c=bc\Leftrightarrow b\left(2-c\right)-2\left(2-c\right)=-4\Leftrightarrow\left(b-2\right)\left(c-2\right)=4\)

Xét các trường hợp được (b;c) = (3;6) ;  (6;3) (chú ý loại các trường hợp b,c âm và b = c)

Nếu a = 3 thì \(\frac{1}{b}+\frac{1}{c}=\frac{2}{3}\)

Làm tương tự như trên được (b;c) = (2;6) ; (6;2) (chú ý loại các trường hợp b,c âm và b = c)

Vậy : (a;b;c) = (2;3;6) và các hoán vị.

 

2 tháng 9 2016

Câu hỏi của Hoàng Gia Kiên - Toán lớp 6 - Học toán với OnlineMath

30 tháng 8 2016

goi 3 do can tim la a , b ,c ( a,b,c la so tu nhien ) 
the de bai ta co : 1/a +1/b+1/c la so tu nhien 
vi 1/a , 1/b ,1/c <=1 vay 1/a +1/b+1/c <=3 
xet cac th : 
th1 : 1/a +1/b+1/c =3 => a=b=xc=1 la nghiem 
th2: 1/a +1/b+1/c=2 => a*b+b*c+a*c=2*a*b*c ( 1 ) 
gia su a = min (a,b,c ) => b*c= max ( a*b ,b*c ,a*c ) 
neu a=> 2 vay 2*a*b*c => 4*b*c > a*b+b*c+a*c vay a=1 hoac 2 
+) voi a=1 ( 1 ) <=> 1+1/b+1/c =2 
=> 1/b+1/c = 1 => b+c =b*c => b=c = 2 
+) voi a=1 (1) 1/2+1/b+1/c =2 
=> 1/b+1/c = 3/2 => b=1 x=2 hoac b=2 c=1 
th3: 1/a +1/b+1/c=1 => a*b+b*c+a*c=a*b*c ( 2 ) 
gia su a = min (a,b,c ) => b*c= max ( a*b ,b*c ,a*c ) 
neu a=> 4 vay a*b*c => 4*b*c > a*b+b*c+a*c vay a=1,2 hoac 3 
den day ban lam tuong tu TH2 se tim duoc nghiem chuc hoc tot 

18 tháng 6 2018

gọi 3 số cần tìm là x;y;z
số lớn nhất là x,số nhỏ nhất là z
ta có: x≤y≤z(1)
theo giả thiết :1x+1y+1z=2(2)
Do (1)nên 2=1x+1y+1z≤3x
Vậy x=1
Thay vào (2) ta dc :1y+1z=1≤2y
Vậy y=2 từ đó z=2
3 số cần tìm là 1;2;2

24 tháng 12 2016

Gọi 2 số đó lần lượt là a,b (a,b>0)

Vì tổng các bình phương của chúng bằng 4736

nên \(a^2+b^2=4736\)

Tỉ số của 2 số đó là 5:7 nên \(a:b=5:7\Rightarrow\frac{a}{5}=\frac{b}{7}\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)

\(\Rightarrow\begin{cases}\frac{a^2}{25}=64\Rightarrow a^2=64\cdot25=1600\Rightarrow a=\pm40\\\frac{b^2}{49}=64\Rightarrow b^2=64\cdot49=3136\Rightarrow b=\pm56\end{cases}\)

 

 

24 tháng 12 2016

Làm ơn làm giùm tui với!

21 tháng 10 2016

Gọi ba số dương cần tìm là x , y , z

Theo đề bài ra ta có : x2 + y2 + z2

và y = 3.x/4 = 2.z/3

BCNN(3;2) = 6

suy ra : y . 1/6 = 1/6 . 3/4 .x = 1/6 . 2/3 . z

khi và chỉ khi : y/6 = x/8 = x/9

suy ra : y2/62 = x2/82 = z2/92 = y2 + x2 + z2/36 + 64 + 81= 181/181= 1

Từ y2/62 = 1 suy ra y2 = 62 suy ra y = 6

x2/82 = 1 suy ra x2 = 82 suy ra x = 8

z2/92 = 1 suy ra z2 = 92 suy ra z = 9

Vậy y = 6 ; x = 8 ; z = 9

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

20 tháng 11 2017

Giải : Gọi a và b là hai số cần tìm , d là ƯCLN ( a , b ).

ƯCLN ( a , b ) = d \(\Leftrightarrow\) a = da' 

                                        b = db'

                               ( a' , b' ) = 1

BCNN ( a , b ) = a . b / ƯCLN ( a , b ) = da' . db' / d = da' b'.

Theo đề bài : BCNN ( a , b ) + ƯCLN ( a , b ) = 19

nên                              da' b' + d = 19

suy ra                         d( a' b' + 1 ) = 19

Do đó a' b' + 1 là ước của 19 , và a' b' + 1\(\ge\) 2.

Giả sử a \(\ge\) b thì a' \(\ge\) b' . Ta được :

da' b' + 1a' . b' 
11918 = 2 . 32 

 \(\Leftrightarrow\) 

a'b'ab
181181
9292

                     Đáp số : 18 và 1 ; 9 và 2.